Advertisement

Biological Strategies of Lichen Symbionts to the Toxicity of Lead (Pb)

  • Joana R. Expósito
  • Eva Barreno
  • Myriam CataláEmail author
Chapter
Part of the Radionuclides and Heavy Metals in the Environment book series (RHME)

Abstract

Lichens are symbiotic organisms, originated by mutualistic associations of heterotrophic fungi (mycobiont), photosynthetic partners (photobionts) which can be either cyanobacteria (cyanobionts) or green microalgae (phycobionts), and bacterial consortia. They are poikilohydric organisms without cuticles or nutrient absorption organs adapted to anhydrobiosis. They present a large range of tolerance to abiotic stress (UV radiation, extreme temperatures, high salinity, mineral excess, etc.) and prosper all around the Earth, especially in harsh habitats, including Antarctica and warm deserts. Their biodiversity is widely used as a bioindicator of environmental quality due to this diversity of tolerance in different species, and they are included in air Pb monitoring programmes worldwide. Their ability to bioaccumulate environmental substances, including some air pollutants and heavy metals, makes them excellent passive biomonitors of Pb. Heavy metal tolerance is related to diverse mechanisms: cell walls and exclusion systems (such as extracellular polymeric substances), intracellular chelators and an extraordinary antioxidant and repair capacity. But recent data show that the most powerful mechanism is related with the upregulation of mutual systems by symbiosis.

Keywords

Pb Lichens Bioindicators Biomonitors Tolerance Microalgae 

Notes

Acknowledgements

We wish to thank Dr Jon San Sebastián for the elaboration of Fig. 1. This work was supported by the Ministerio de Economía y Competitividad (MINECO-FEDER, Spain) (CGL2016-79158-P) and Generalitat Valenciana (GVA, Excellence in Research Spain) (PROMETEOIII/2017/039) and Comunidad de Madrid - European Commission (Youth Employment Intiative, Spain) (PEJ-2017-AI/AMB-6337).

References

  1. Agnan Y, Probst A, Séjalon-Delmas N (2017) Evaluation of lichen species resistance to atmospheric metal pollution by coupling diversity and bioaccumulation approaches: a new bioindication scale for French forested areas. Ecol Indic 72:99–110CrossRefGoogle Scholar
  2. Agnan Y, Séjalon-Delmas N, Claustres A, Probst A (2015) Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century. Science of The Total Environment 529:285–296Google Scholar
  3. Ahmadjian V (1993) The lichen symbiosis. Wiley, New YorkGoogle Scholar
  4. Ahmadjian V (1995) Lichens are more important than you think. Bioscience 45:124–124CrossRefGoogle Scholar
  5. Álvarez R, del Hoyo A, García-Breijo F, Reig-Armiñana J, del Campo EM, Guéra A, Barreno E, Casano LM (2012) Different strategies to achieve Pb-tolerance by the two Trebouxia algae coexisting in the lichen Ramalina farinacea. J Plant Physiol 169:1797–1806CrossRefGoogle Scholar
  6. Álvarez R, del Hoyo A, Díaz-Rodríguez C, Coello AJ, del Campo EM, Barreno E, Catalá M, Casano LM (2015) Lichen rehydration in heavy metal-polluted environments: Pb modulates the oxidative response of both Ramalina farinacea Thalli and its isolated microalgae. Microb Ecol 69:698–709CrossRefGoogle Scholar
  7. Arhoun M, Barreno E, Ramis-Ramos G (2000) Releasing rates of inorganic ions in lichens monitored by capillary zone electrophoresis as indicators of atmospheric pollution. Crypt Mycol 21:275–289CrossRefGoogle Scholar
  8. Armstrong RA (2017) Adaptation of lichens to extreme conditions. In: Shukla V, Kumar S, Kumar N (eds) Plant adaptation strategies in changing environment. Springer, Singapore, pp 1–27Google Scholar
  9. Aschenbrenner IA, Cernava T, Berg G, Grube M (2016) Understanding microbial multi-species symbioses. Front Microbiol 7:1–9CrossRefGoogle Scholar
  10. Augusto S, Máguas C, Matos J, Pereira MJ, Branquinho C (2010) Lichens as an integrating tool for monitoring PAH atmospheric deposition: a comparison with soil, air and pine needles. Environ Pollut 158:483–489CrossRefGoogle Scholar
  11. Bačkor M, Loppi S (2009) Interactions of lichens with heavy metals. Biol Plant 53:214–222CrossRefGoogle Scholar
  12. Bačkor M, Pawlik-Skowrońska B, Tomko J, Budová J, Sanità di Toppi L (2006) Response to copper stress in aposymbiotically grown lichen mycobiont Cladonia cristatella: uptake, viability, ergosterol and production of non-protein thiols. Mycol Res 110:994–999CrossRefGoogle Scholar
  13. Bačkor M, Pawlik-Skowrońska B, Budová J, Skowroński T (2007) Response to copper and cadmium stress in wild-type and copper tolerant strains of the lichen alga Trebouxia erici: Metal accumulation, toxicity and non-protein thiols. Plant Growth Regul 52:17–27CrossRefGoogle Scholar
  14. Bačkor M, Peksa O, Škaloud P, Bačkorová M (2010) Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. Ecotoxicol Environ Saf 73:603–612CrossRefGoogle Scholar
  15. Bačkor M, Péli ER, Vantová I (2011) Copper tolerance in the macrolichens Cladonia furcata and Cladonia arbuscula subsp. mitis is constitutive rather than inducible. Chemosphere 85:106–113Google Scholar
  16. Bajpai R, Semwal M, Singh CP (2018) Suitability of lichens to monitor climate change. Crypto Biodiver Assess, 182–188Google Scholar
  17. Bargagli R (1998) Trace elements in terrestrial plants: an ecophysiological approach to biomonitoring and biorecovery. Springer, BerlinGoogle Scholar
  18. Bari A, Rosso A, Minciardi MR, Troiani F, Piervittori R (2001) Analysis of heavy metals in atmospheric particulates in relation to their bioaccumulation in explanted Pseudevernia furfurea thalli. Environ Monit Assess 69:205-220Google Scholar
  19. Barreno E (2013) Life is symbiosis. In: Chica C (ed) Once upon a time Lynn Margulis: a portrait of Lynn Margulis by colleagues and friends. Ed. Septimus, Barcelona, pp 56–60Google Scholar
  20. Beck A (1999) Photobiont inventory of a lichen community growing on heavy-metal-rich rock. Lichenologist 31:501–510CrossRefGoogle Scholar
  21. Beckett RP, Mayaba N, Minibayeva FV, Alyabyev AJ (2005) Hardening by partial dehydration and ABA increase desiccation tolerance in the cyanobacterial lichen Peltigera polydactylon. Ann Bot 96:109–115CrossRefGoogle Scholar
  22. Beckett RP, Kranner I, Minibayeva FV (2008) Lichen biology. Stress physiology and the symbiosis. Cambridge University Press, New YorkGoogle Scholar
  23. Berganimini A, Scheidegger C, Stofer S, Carvalho P, Davey S, Dietrich M, Dubs F, Farks E, Groner U, Karkkainen K, Keller C, Lokos L, Lommi S, Maguas C, Mitchell R, Pinho P, Richo J, Aragon G, Truscott AM, Wolseley P, Watt A (2005) Performance of macrolichens and lichen genera as indicators of lichen species richness and composition. Conserv Biol 19:1051–1062Google Scholar
  24. Bérmudez GMA, Rodríguez JH, Pignata ML (2009) Comparison of the air pollution biomonitoring ability of three Tillandsia species and the lichen Ramalina celastri in Argentina. Environmental Research 109 (1):6–14Google Scholar
  25. Bollhöfer A, Rosman KJ (2002) The temporal stability in lead isotopic signatures at selected sites in the Southern and Northern Hemispheres. Geochim Cosmochim Acta 66:1375–1386CrossRefGoogle Scholar
  26. Bosch-Roig P, Barca D, Crisci GM, Lalli C (2013) Lichens as bioindicators of atmospheric heavy metal deposition in Valencia, Spain. J Atmos Chem 70:373–388CrossRefGoogle Scholar
  27. Branquinho C, Brown DH (1994) A method for studying the cellular location of lead in lichens. Lichenol 26:83–90CrossRefGoogle Scholar
  28. Branquinho C, Brown DH, Máguas C, Catarino F (1997) Lead (Pb) uptake and its effects on membrane integrity and chlorophyll fluorescence in different lichen species. Environ Exp Bot 37:95–105CrossRefGoogle Scholar
  29. Branquinho C, Catarino F, Brown DH, Pereira MJ, Soares A (1999) Improving the use of lichens as biomonitors of atmospheric metal pollution. Sci Total Environ 232:67–77CrossRefGoogle Scholar
  30. Brown DH, Beckett RP (1983) Differential sensitivity of lichens to heavy metals. Ann Bot 52:51–57CrossRefGoogle Scholar
  31. Calabrese EJ (2008) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27:1451–1474CrossRefGoogle Scholar
  32. Calabrese EJ (2014) Hormesis: a fundamental concept in biology. Microb Cell 1:1–5CrossRefGoogle Scholar
  33. Calabrese EJ, Blain RB (2009) Hormesis and plant biology. Environ Pollut 157:42–48CrossRefGoogle Scholar
  34. Calatayud A, Abadía Á, Abadía J, Barreno E (1999) Effects of ascorbate feeding on chlorophyll fluorescence and xanthophyll cycle components in the lichen Parmelia quercina (Willd.) Vainio exposed to atmospheric pollutants. Physiol Plant 105:679–684Google Scholar
  35. Calatayud A, Deltoro VI, Barreno E, Del Valle-Tascon S (1997) Changes in in vivo chlorophyll fluorescence quenching in lichen thalli as a function of water content and suggestion of zeaxanthin-associated photoprotection. Physiol Plant 101:93–102CrossRefGoogle Scholar
  36. del Campo EM, Gimeno J, de Nova JPG, Casano LM, Gasulla F, Breijo FJB, Arminana JR, Barreno E (2010) South European populations of Ramalina farinacea (L.) Ach. share different Trebouxia algae. In: Nash TH III, Geiser L, McCune B (eds) Biology of lichens: ecology, environmental monitoring, systematics and cyber applications. E. Schweizerbart Science Publishers, Stuttgart, Germany, pp 247–256Google Scholar
  37. del Campo EM, Catalá S, Gimeno J, Del Hoyo A, Martinez-Alberola F, Casano LM, Grube M, Barreno E (2013) The genetic structure of the cosmopolitan three-partner lichen Ramalina farinacea evidences the concerted diversification of symbionts. FEMS Microbiol Ecol 83:310–323CrossRefGoogle Scholar
  38. Carreras HA, Pignata ML, (2001) Comparison among air pollutants, meteorological conditions and some chemical parameters in the transplanted lichen Usnea amblyoclada. Environmental Pollution 111:45–52Google Scholar
  39. Carreras HA, Pignata ML (2002) Biomonitoring of heavy metals and air quality in Cordoba City, Argentina, using transplanted lichens. Environ Pollut 117:77–87CrossRefGoogle Scholar
  40. Casano LM, Del Campo EM, García-Breijo FJ, Reig-Armiñana J, Gasulla F, Del Hoyo A, Guéra A, Barreno E (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13:806–818CrossRefGoogle Scholar
  41. Casano LM, Braga MR, Álvarez R, Del Campo EM, Barreno E (2015) Differences in the cell walls and extracellular polymers of the two Trebouxia microalgae coexisting in the lichen Ramalina farinacea are consistent with their distinct capacity to immobilize extracellular Pb. Plant Sci 236:195–204CrossRefGoogle Scholar
  42. Catalá M, Gasulla F, Pradas del Real AE, García-Breijo F, Reig-Arminana J, Barreno E (2010a) Nitric oxide is involved in oxidative stress during rehydration of Ramalina farinacea (L.) Ach. in the presence of the oxidative air pollutant cumene hydroperoxide. In: Nash T III, Geiser L, McCune B (eds) Biology of lichens: ecology, environmental monitoring, systematics and cyber applications. E. Schweizerbart Science Publishers, Stuttgart, pp 87–92Google Scholar
  43. Catalá M, Gasulla F, Pradas del Real AE, García-Breijo F, Reig-Armiñana J, Barreno E (2010b) Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis. BMC Microbiol 10:297CrossRefGoogle Scholar
  44. Catalá M, Gasulla F, Pradas Del Real AE, García-Breijo F, Reig-Armiñana J, Barreno E (2013) The organic air pollutant cumene hydroperoxide interferes with NO antioxidant role in rehydrating lichen. Environ Pollut 179:277–284CrossRefGoogle Scholar
  45. Cernava T, Erlacher A, Aschenbrenner IA, Krug L, Lassek C, Riedel K, Grube M, Berg G (2017) Deciphering functional diversification within the lichen microbiota by meta-omics. Microbiome 5:82CrossRefGoogle Scholar
  46. Chettri MK, Sawidis T (1997) Impact of heavy metals on water loss from lichen thalli. Ecotoxicol Environ Saf 37:103–111CrossRefGoogle Scholar
  47. Chettri MK, Cook CM, Vardaka E, Sawidis T, Lanaras T (1998) The effect of Cu, Zn and Pb on the chlorophyll content of the lichens Cladonia convoluta and Cladonia rangiformis. Environ Exp Bot 39:1–10CrossRefGoogle Scholar
  48. Chiva S, Garrido‐Benavent I, Moya P, Molins A, Barreno E (2019) How did terricolous fungi originate in the Mediterranean region? A case study with a gypsicolous lichenized species. Journal of Biogeography 46:515–525Google Scholar
  49. Cislaghi C, Nimis PL (1997) Lichens, air pollution and lung cancer. Nature 387:463–464CrossRefGoogle Scholar
  50. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182CrossRefGoogle Scholar
  51. Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment: a review. Environ Pollut 114:471–492CrossRefGoogle Scholar
  52. Cumming G, Fidler F, Vaux DL (2007) Error bars in experimental biology. J Cell Biol 177:7–11CrossRefGoogle Scholar
  53. Delmail D, Grube M, Parrot D, Cook-Moreau J, Boustie J, Labrousse P, Tomasi S (2013) Halotolerance in lichens: symbiotic coalition against salt stress. In: Prasad M (ed) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 115–148CrossRefGoogle Scholar
  54. Dzubaj A, Backor M, Tomko J, Peli E, Tuba Z (2008) Tolerance of the lichen Xanthoria parietina (L.) Th. Fr. to metal stress. Ecotoxicol Environ Saf 70:319–326CrossRefGoogle Scholar
  55. Edwards HGM, Rusself NC, Seaward MRD (1997) Calcium oxalate in lichen biodeterioration FT-Raman spectroscopy. Spectrochim Acta Part A Mol Biomol Spectros 53:99–105Google Scholar
  56. Eldridge DJ, Delgado-Baquerizo M (2018) The influence of climatic legacies on the distribution of dryland biocrust communities. Glob Chang Biol 25:327–336CrossRefGoogle Scholar
  57. Ellis CJ, Coppins BJ (2009) Quantifying the role of multiple landscape-scale drivers controlling epiphyte composition and richness in a conservation priority habitat (Juniper scrub). Biol Conserv 142:1291–1301CrossRefGoogle Scholar
  58. Expósito JR, Coello AJ, Barreno E, Casano LM, Catalá M (2019) Endogenous NO is involved in dissimilar responses to rehydration and Pb(NO3)2 in Ramalina farinacea thalli and its isolated phycobionts. Microbial ecology (in press).Google Scholar
  59. Feuerer T, Hawksworth DL (2007) Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan’s floristic regions. Biodiversity and Conservation 16:85–98Google Scholar
  60. Firdous S, Khan S, Dar M, Shaheen H, Habib T, Saifullah T (2017) Diversity and distribution of lichens in different ecological zones of Western Himalayas Pakistan. Bang J Bot 46:805–811Google Scholar
  61. García-Breijo F, Reig-Armiñana J, Salvá G, Vazquez VM, Barreneno E (2010) El liquen Ramalina farinacea (L.) Ach. en Asturias. Estructura de talos e identificación molecular de los dos ficobiontes de Trebouxia que coexisten. Boletín Ciencias Nat RIDEA 51:325–336Google Scholar
  62. Garty J (2010) Biomonitoring atmospheric heavy metals with lichens: theory and application. CRC Crit Rev Plant Sci 20:309–371CrossRefGoogle Scholar
  63. Garty J, Fuchs C, (1982) Heavy metals in the lichen Ramalina duriaei transplanted in biomonitoring stations. Water, Air, and Soil Pollution 17:175–183.Google Scholar
  64. Garty J, Theiss HB (1990) The localization of lead in the lichen Ramalina duriaei (De Not.) Bagl. Bot Acta 103:311–314CrossRefGoogle Scholar
  65. Garty J, Ronen R, Galun M (1985) Correlation between chlorophyll degradation and the amount of some elements in the lichen Ramalina duriaei (de not.) Jatta. Environ Exp Bot 25:67–74CrossRefGoogle Scholar
  66. Garty J, Karary Y, Harel J (1992) Effect of low pH, heavy metals and anions on chlorophyll degradation in the lichen Ramalina duriaei (de not.) bagl. Environ Exp Bot 32:229–241CrossRefGoogle Scholar
  67. Garty J, Karary Y, Harel J (1993) The impact of air pollution on the integrity of cell membranes and chlorophyll in the lichen Ramalina duriaei (de not.) bagl. transplanted to industrial sites in Israel. Arch Environ Contam Toxicol 24:455–460CrossRefGoogle Scholar
  68. Garty J, Cohen Y, Kloog N, Karnieli A (1997) Effects of air pollution on cell membrane integrity, spectral reflectance and metal and sulfur concentrations in lichens. Environ Toxicol Chem 16:1396–1402CrossRefGoogle Scholar
  69. Garty J, Tomer S, Levin T, Lehr H (2003) Lichens as biomonitors around a coal-fired power station in Israel. Environ Res 91:186–198CrossRefGoogle Scholar
  70. Gasulla F, De Nova PG, Esteban-Carrasco A, Zapata JM, Barreno E, Guéra A (2009) Dehydration rate and time of desiccation affect recovery of the lichenic algae Trebouxia erici: alternative and classical protective mechanisms. Planta 231:195–208CrossRefGoogle Scholar
  71. Geiser LH, Neitlich PN (2007) Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens. Environ Pollut 145:203–218CrossRefGoogle Scholar
  72. Giordani P (2007) Is the diversity of epiphytic lichens a reliable indicator of air pollution? A case study from Italy. Environ Pollut 146:317–323CrossRefGoogle Scholar
  73. Giordani P, Brunialti G, Alleteo D (2002) Effects of atmospheric pollution on lichen biodiversity (LB) in a Mediterranean region (Liguria, northwest Italy). Environ Pollut 118:53–64CrossRefGoogle Scholar
  74. Giordani P, Calatayud V, Stofer S, Seidling W, Granke O, Fischer R (2014) Detecting the nitrogen critical loads on European forests by means of epiphytic lichens. A signal-to-noise evaluation. For Ecol Manage 311:29–40CrossRefGoogle Scholar
  75. González CM and Pignata ML (1994) The influence of air pollution on soluble proteins, chlorophyll degradation, MDA, sulphur and heavy metals in a transplanted lichen. Chem. and Ecol. 9:105–113Google Scholar
  76. Goyal R, Seaward MRD (1981) Metal uptake in terricolous lichens:I. Metal localization within the thallus. New Phytol 89:631–645CrossRefGoogle Scholar
  77. Goyal R, Seaward MRD (1982) Metal uptake in terricolous lichens: II. Effects on the morphology of Peltigera canina and Peltigera rufescens. New Phytol 90:73–84CrossRefGoogle Scholar
  78. Green TGA, Sancho LG, Pintado A (2011) Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Ecological studies (analysis and synthesis), vol 215. Springer, HeidelbergGoogle Scholar
  79. Gurbanov R, Unal D (2019) The biomolecular alterations in Cladonia convoluta in response to lead exposure. Spectrosc Lett 51:563–570CrossRefGoogle Scholar
  80. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. doi:  https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
  81. Hasegawa PM, Bressan RA (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499CrossRefGoogle Scholar
  82. Hauck M, Jurgens SR, Willenbruch K, Huneck S, Leuschner C (2009a) Dissociation and metal-binding characteristics of yellow lichen substances suggest a relationship with site preferences of lichens. Ann Bot 103:13–22CrossRefGoogle Scholar
  83. Hauck M, Willenbruch K, Leuschner C (2009b) Lichen substances prevent lichens from nutrient deficiency. J Chem Ecol 35:71–73CrossRefGoogle Scholar
  84. Hauck M, Juergens SR, Leuschner C (2010) Norstictic acid: correlations between its physico-chemical characteristics and ecological preferences of lichens producing this depsidone. Environ Exp Bot 68:309–313CrossRefGoogle Scholar
  85. Hawksworth DL, Rose F (1970) Qualitative scale for estimating sulphur dioxide air pollution in England and wales using epiphytic lichens. Nature 227:145–148CrossRefGoogle Scholar
  86. Herzig R, Liebendorfer L, Urech M, Ammann K, Cuecheva M, Landolt W (1990) Lichens as biological indicators of air-pollution in Switzerland—passive biomonitoring as a part of an integrated measuring system for monitoring air-pollution. Elem Conc Cadasters Ecosyst 35:43–57Google Scholar
  87. Högnabba F (2006) Molecular phylogeny of the genus Stereocaulon (Stereocaulaceae, lichenized Ascomycetes). Mycol Res 110:1080–1092CrossRefGoogle Scholar
  88. Honegger R (1991) Functional aspects of the lichen symbiosis. Annu Rev Plant Physiol Plant Mol Biol 42:553–578CrossRefGoogle Scholar
  89. Honegger R (1998) The lichen symbiosis—what is so spectacular about it? Lichenologist 30:193–212CrossRefGoogle Scholar
  90. del Hoyo A, Álvarez R, del Campo EM et al (2011) Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea. Ann Bot 107:109–118CrossRefGoogle Scholar
  91. Jafarnezhad-Moziraji Z, Saeidi-Sar S, Dehpour AA, Masoudian N (2017) Protective effects of exogenous nitric oxide against lead toxicity in Lemon balm (Melissa officinalis L.). Appl Ecol Environ Res 15:1605–1621CrossRefGoogle Scholar
  92. Kaur G, Singh HP, Batish DR, Mahajan P, Kohli RK, Rishi V (2015) Exogenous nitric oxide (NO) interferes with lead (Pb)-induced toxicity by detoxifying reactive oxygen species in hydroponically grown wheat (Triticum aestivum) roots. PLoS One 10(9):e0138713CrossRefGoogle Scholar
  93. Kinalioǧlu K, Horuz A, Kutbay HG, Bilgin A, Yalcin E (2006) Accumulation of some heavy metals in lichens in Giresun city, Turkey. Ekologia 25:306–313Google Scholar
  94. Kirk P, Cannon P, David J, Stalpers J (2008) Dictionary of the fungi, 10th edn. CABI Bioscience, United KingdomGoogle Scholar
  95. Koch NM, Matos P, Branquinho C, Pinho P, Lucheta F, de Azevedo Martins SM, Ferrao Vargas VM (2019) Selecting lichen functional traits as ecological indicators of the effects of urban environment. Sci Total Environ 654:705–713CrossRefGoogle Scholar
  96. Komárek M, Ettler V, Chrastný V, Mihaljevič M (2008) Lead isotopes in environmental sciences: a review. Environ Int 34:562–577CrossRefGoogle Scholar
  97. Kováčik J, Klejdus B, Babula P, Hedbavny J (2015) Nitric oxide donor modulates cadmium-induced physiological and metabolic changes in the green alga Coccomyxa subellipsoidea. Algal Res 8:45–52CrossRefGoogle Scholar
  98. Kováčik J, Rotková G, Bujdoš M, Babula P, Peterková V, Matúš P (2017) Ascorbic acid protects Coccomyxa subellipsoidea against metal toxicity through modulation of ROS/NO balance and metal uptake. J Hazard Mater 339:200–207CrossRefGoogle Scholar
  99. Kováčik J, Dresler S, Babula P (2018a) Metabolic responses of terrestrial macrolichens to nickel. Plant Physiol Biochem 127:32–38CrossRefGoogle Scholar
  100. Kováčik J, Dresler S, Peterková V, Babula P (2018b) Metal-induced oxidative stress in terrestrial macrolichens. Chemosphere 203:402–409CrossRefGoogle Scholar
  101. Kováčik J, Dresler S, Micalizzi G, Babula P, Hladky J, Mondello L (2019) Nitric oxide affects cadmium-induced changes in the lichen Ramalina farinacea. Nitric Oxide 83:11–18CrossRefGoogle Scholar
  102. Kranner I, Birtic S (2005) A modulating role for antioxidants in desiccation tolerance. Integr Comp Biol 45:734–740CrossRefGoogle Scholar
  103. Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci U S A 102:3141–3146CrossRefGoogle Scholar
  104. Kranner I, Beckett R, Hochman A, Nash TH (2008) Desiccation-tolerance in lichens: a review. Bryologist 111:576–593CrossRefGoogle Scholar
  105. Laaksovirta K, Olkkonen H, Alakuijala P (1976) Observations on the lead content of lichen and bark adjacent to a highway in Southern Finland. Environ Pollut 11:247–255CrossRefGoogle Scholar
  106. Loppi S, Bargagli R (1996) Lichen biomonitoring of trace elements in a geothermal area (central Italy). Water Air Soil Pollut 88:177–187Google Scholar
  107. Loppi S, Frati L (2006) Lichen diversity and lichen transplants as monitors of air pollution in a rural area of central Italy. Environ Monit Assess 114:361–375CrossRefGoogle Scholar
  108. Loppi S, Putortì E, Pirintsos SA, De Dominicis V (2000) Accumulation of heavy metals in epiphytic lichens near a municipal solid waste incinerator (central Italy). Environ Monit Assess 61:361–371CrossRefGoogle Scholar
  109. Lücking R, Hodkinson BP, Leavitt SD (2016) The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota approaching one thousand genera. Bryologist 119:361–416CrossRefGoogle Scholar
  110. Margulis L, Barreno E (2003) Looking at lichens. Bioscience 53:776CrossRefGoogle Scholar
  111. Markert B (1993) Interelement correlations detectable in plant samples based on data from reference materials and highly accurate research samples. Fresenius J Anal Chem 345:318–322CrossRefGoogle Scholar
  112. McCune B, Dey J, Peck J, Heiman K, Will Wolf S (1997) Regional gradients in lichen communities of the Southeast United States. Bryologist 100:145–158Google Scholar
  113. Moya P, Molins A, Martínez-Alberola F, Muggia L, Barreno E (2017) Unexpected associated microalgal diversity in the lichen Ramalina farinacea is uncovered by pyrosequencing analyses. PLoS One 12(4):e0175091Google Scholar
  114. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216CrossRefGoogle Scholar
  115. Nash TH III (1996) Lichen biology, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  116. Nash TH III, Gries C (1995) The response of lichens to atmospheric deposition with an emphasis on the Arctic. Sci Total Environ 160–161:737–747CrossRefGoogle Scholar
  117. Nash TH III, Gries C (2002) Lichens as bioindicators of sulfur dioxide. Symbiosis 33:1–21Google Scholar
  118. Nimis P, Lazzarin G, Lazzarin A, Skert N (2000) Biomonitoring of trace elements with lichens in Veneto (NE Italy). The Science of The Total Environment 255:97–111Google Scholar
  119. Nimis PL, Castello M, Perotti M (1990) Lichens as biomonitors of sulphur dioxide pollution in la spezia (northern italy). Lichenol 22:333–344CrossRefGoogle Scholar
  120. Ochoa-Hueso R, Munzi S, Alonso R, Alonso R, Arróniz-Crespo M, Avila A, Bermejo V, Bobbink R, Branquinho C, Concostrina-Zubiri L, Cruz C, Cruz de Carvalho R, De Marco A, Dias T, Elustondo D, Elvira S, Estébanez B, Fusaro L, Gerosa G, Izquieta-Rojano S, Lo Cascio M, Marzuoli R, Matos P, Mereu S, Merino J, Morillas L, Nunes A, Paoletti E, Paoli L, Pinho P, Rogers IB, Santos A, Sicard P, Stevens CJ, Theobald MR (2017) Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: current research and future directions. Environ Pollut 227:194–206CrossRefGoogle Scholar
  121. Ockenden WA, Steinnes E, Parker C, Jones KC (1998) Observations on persistent organic pollutants in plants: Implications for their use as passive air samplers and for POP cycling. Environ Sci Technol 32:2721–2726CrossRefGoogle Scholar
  122. Ozturk S, Aslim B, Suludere Z, Tan S (2014) Metal removal of cyanobacterial exopolysaccharides by uronic acid content and monosaccharide composition. Carbohydr Polym 101:265–271CrossRefGoogle Scholar
  123. Paoli L, Corsini A, Bigagli V, Vannini J, Bruscoli C, Loppi S (2012) Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens. Environmental Pollution 161:70–75Google Scholar
  124. Paoli L, Pisani T, Guttová A, Sardella G, Loppi S (2011) Physiological and chemical response of lichens transplanted in and around an industrial area of south Italy: relationship with the lichen diversity. Ecotoxicol Environ Saf 74:650–657CrossRefGoogle Scholar
  125. Pawlik-Skowronska B (2000) Relationships between acid-soluble thiol peptides and accumulated Pb in the green alga Stichococcus bacillaris. Aquat Toxicol 50:221–230CrossRefGoogle Scholar
  126. Pawlik-Skowrońska B, Bačkor M (2011) Zn/Pb-tolerant lichens with higher content of secondary metabolites produce less phytochelatins than specimens living in unpolluted habitats. Environ Exp Bot 72:64–70CrossRefGoogle Scholar
  127. Pawlik-Skowrońska B, Di Toppi LS, Favali MA, Fossati F, Pirszel J, Skowronski T (2002) Lichens respond to heavy metals by phytochelatin synthesis. New Phytol 156:95–102CrossRefGoogle Scholar
  128. Pereira P, de Pablo H, Rosa-Santos F, Pacheco M, Vale C (2009) Metal accumulation and oxidative stress in Ulva sp. substantiated by response integration into a general stress index. Aquat Toxicol 91:336–345CrossRefGoogle Scholar
  129. Pinho P, Augusto S, Maguas C, Pereira MJ, Soares A, Branquinho C (2008) Impact of neighbourhood land-cover in epiphytic lichen diversity: analysis of multiple factors working at different spatial scales. Environ Pollut 151:414–422CrossRefGoogle Scholar
  130. Pinho P, Dias T, Cruz C, Tang YS, Sutton MA, Martins-Loução MA, Máguas C, Branquinho C, (2011) Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. Journal of Applied Ecology 48:1107–1116Google Scholar
  131. Poličnik H, Franc B, Cvetka RL (2004) Monitoring of short-term heavy metal deposition by accumulation in epiphytic lichens (Hypogymnia physodes (L.) Nyl.). J Atmos Chem 49:223–230CrossRefGoogle Scholar
  132. Puckett KJ (1976) The effect of heavy metals on some aspects of lichen physiology. Can J Bot 54:2695–2703CrossRefGoogle Scholar
  133. Purvis OW, Pawlik-Skowrońska B, Cressey G, Jones GC, Kearsley A, Spratt J (2008) Mineral phases and element composition of the copper hyperaccumulator lichen Lecanora polytropa. Mineral Mag 72:539–548CrossRefGoogle Scholar
  134. Richardson DH (1993) Pollution monitoring with lichens. Richmond Publishing, SloughGoogle Scholar
  135. Sanità Di Toppi L, Musetti R, Marabottini R, Corradi MG, Favali MA, Badiani M (2004) Responses of Xanthoria parietina thalli to environmentally relevant concentrations of hexavalent chromium. Funct Plant Biol 31:329–338Google Scholar
  136. Sanità Di Toppi L, Musetti R, Vattuone Z, Pawlik Skowronska B, Fassati F, Bertoli L, Badiani M, Favali MA (2005) Cadmium distribution and effects on ultrastructure and chlorophyll status in photobionts and mycobionts of Xanthoria parietina. Microsc Res Tech 66:229–238CrossRefGoogle Scholar
  137. Sarret G, Manceau A, Cuny D, van Haluwyn C, Deruelle S, Hazemann JL, Soldo Y, Eybert Berard L, Menthonnex JJ (1998) Mechanisms of lichen resistance to metallic pollution. Environ Sci Technol 32:3325–3330CrossRefGoogle Scholar
  138. Sett R, Kundu M (2016) Epiphytic lichens: their usefulness as bio-indicators of air pollution. Donnish J 3:17–24Google Scholar
  139. Sigal LL, Nash TH, (1983) Lichen Communities on Conifers in Southern California Mountains: An Ecological Survey Relative to Oxidant Air Pollution. Ecology 64:1343–1354Google Scholar
  140. Sipman HJM, Aptroot A (2001) Where are the missing lichens? Mycol Res 105:1433–1439Google Scholar
  141. Sloof JE (1995) Lichens as quantitative biomonitors for atmospheric trace-element deposition, using transplants. Atmos Environ 29:11–20CrossRefGoogle Scholar
  142. Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC, Schneider K, Stabentheiner E, Tomme Heller M, Thor G, Mayrhofer H, Johannesson H, McCutcheon JP (2016) Basidiomycete yeasts in the cortex of Ascomycete macrolichens. Science 353:488–492CrossRefGoogle Scholar
  143. Stofer S, Calatayud V, Giordani P, Neville P (2012) Assessment of Epiphytic Lichen Diversity. In United Nations Economic Commission for Europe (Ed.), Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests (p. 14). Hamburg: UNECE, ICP Forests.Google Scholar
  144. Takala K, Olkkonen H (1981) Lead content of an epiphytic lichen in the urban area of Kuopio, east central Finland. Finn Zool Bot Publ Board 18:85–89Google Scholar
  145. Tehler A, Irestedt M (2007) Parallel evolution of lichen growth forms in the family Roccellaceae (Arthoniales, Ascomycota). Cladistics 23:432–454CrossRefGoogle Scholar
  146. Valencia-Islas N, Zambrano A, Rojas JL (2007) Ozone reactivity and free radical scavenging behavior of phenolic secondary metabolites in lichens exposed to chronic oxidant air pollution from Mexico City. J Chem Ecol 33:1619–1634CrossRefGoogle Scholar
  147. Varela Z, López-Sánchez G, Yáñez M, Pérez C, Fernández JA, Matos P, Branquinho C, Aboal JR (2018) Changes in epiphytic lichen diversity are associated with air particulate matter levels: The case study of urban areas in Chile. Ecological Indicators 91:307–314Google Scholar
  148. de Vera JP (2012) Lichens as survivors in space and on Mars. Fungal Ecol 5:472–479CrossRefGoogle Scholar
  149. de Vera JP, Alawi M, Backhaus T, Baqué M, Billi D, Böttger U, Berger T, Bohmeier M, Cockell C, Demets R, de la Torre Noetzel R, Edwards H, Elsaesser A, Fagliarone C, Fiedler A, Foing B, Foucher F, Fritz J, Hanke F, Herzog T, Horneck G, Hübers HW, Huwe B, Joshi J, Kozyrovska N, Kruchten M, Lasch P, Lee N, Leuko S, Leya T, Lorek A, Martínez-Frías J, Meessen J, Moritz S, Moeller R, Olsson-Francis K, Onofri S, Ott S, Pacelli C, Podolich O, Rabbow E, Reitz G, Rettberg P, Reva O, Rothschild L, Sancho LG, Schulze-Makuch D, Selbmann L, Serrano P, Szewzyk U, Verseux C, Wadsworth J, Wagner D, Westall F, Wolter D, Zucconi L (2019) Limits of life and the habitability of Mars: the ESA space experiment BIOMEX on the ISS. Astrobiology 19:145–157CrossRefGoogle Scholar
  150. Wieners PC, Mudimu O, Bilger W (2018) Survey of the occurrence of desiccation-induced quenching of basal fluorescence in 28 species of green microalgae. Planta 248:601–612CrossRefGoogle Scholar
  151. Zhang Y, Li S, Lai Y, Wang L, Wang F, Chen Z (2019) Predicting future contents of soil heavy metals and related health risks by combining the models of source apportionment, soil metal accumulation and industrial economic theory. Ecotoxicol Environ Saf 171:211–221CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Joana R. Expósito
    • 1
  • Eva Barreno
    • 2
  • Myriam Catalá
    • 1
    Email author
  1. 1.Departamento de Biología y Geología, Física y Química Inorgánica, (ESCET)Universidad Rey Juan CarlosMóstolesSpain
  2. 2.Universitat de València, ICBIBE (Instituto Cavanilles de Biodiversidad y Biología Evolutiva) Botánica, Facultad de C. BiológicasBurjassotSpain

Personalised recommendations