Advertisement

Applications of Nanomaterials and Nanoparticles

  • Loutfy H. MadkourEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 116)

Abstract

Considering the unique properties discussed in Chap.  14, NSMs and NPs can be used in variety of applications. Some important of these are given below.

References

  1. 1.
    Guo, D., Xie, G., Luo, J.: Mechanical properties of nanoparticles: basics and applications. J. Phys. D Appl. Phys. 47, 13001 (2014).  https://doi.org/10.1088/0022-3727/47/1/013001CrossRefGoogle Scholar
  2. 2.
    Kot, M., Major, Ł., Lackner, J.M., Chronowska-Przywara, K., Janusz, M., Rakowski, W.: Mechanical and tribological properties of carbon-based graded coatings. J. Nanomater. 2016, 1–14 (2016).  https://doi.org/10.1155/2016/8306345CrossRefGoogle Scholar
  3. 3.
    Mallakpour, S., Sirous, F.: Surface coating of a-Al2O3 nanoparticles with poly(vinyl alcohol) as biocompatible coupling agent for improving properties of bio-active poly(amide-imide) based nanocomposites having l-phenylalanine linkages. Prog. Org. Coat. 85, 138–145 (2015).  https://doi.org/10.1016/j.porgcoat.2015.03.021CrossRefGoogle Scholar
  4. 4.
    Shao, W., Nabb, D., Renevier, N., Sherrington, I., Luo, J.K.: Mechanical and corrosion resistance properties of TiO2 nanoparticles reinforced Ni coating by electrodeposition. IOP Conf. Ser. Mater. Sci. Eng. 40, 12043 (2012).  https://doi.org/10.1088/1757-899X/40/1/012043CrossRefGoogle Scholar
  5. 5.
    Wang, Z., Ruan, J., Cui, D.: Advances and prospect of nanotechnology in stem cells. Nanoscale Res. Lett. 4, 593–605 (2009)CrossRefGoogle Scholar
  6. 6.
    Ricardo e Lino F, P.N.: Stem cell research meets nanotechnology. Revista Da Sociedade Portuguesa D Bioquimica, CanalBQ 7, 38–46 (2010)Google Scholar
  7. 7.
    Deb, K.D., Griffith, M., Muinck, E.D., Rafat, M.: Nanotechnology in stem cells research: advances and applications. Front Biosci (Landmark Ed) 17, 1747–1760 (2012)CrossRefGoogle Scholar
  8. 8.
    Loureiro, A., Azoia, N.G., Gomes, A.C., Cavaco-Paulo, A.: Albumin-based nanodevices as drug carriers. Curr. Pharm. Des. 22, 1371–1390 (2016)CrossRefGoogle Scholar
  9. 9.
    Martis, E., Badve, R., Degwekar, M.: Nanotechnology based devices and applications in medicine: an overview. Chron. Young Sci. 3, 68 (2012).  https://doi.org/10.4103/2229-5186.94320CrossRefGoogle Scholar
  10. 10.
    Nikalje, A.P., 2015. Nanotechnology and its applications in medicine. Med Chem 5. http://dx.doi.org/10.4172/2161-0444.1000247
  11. 11.
    Alexis, F., Pridgen, E., Molnar, L.K., Farokhzad, O.C.: Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5, 505–515 (2008).  https://doi.org/10.1021/mp800051mCrossRefGoogle Scholar
  12. 12.
    Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A.R., Ali, J.S., Hussain, A.: Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49–67 (2016).  https://doi.org/10.2147/NSA.S99986CrossRefGoogle Scholar
  13. 13.
    Jain, P.K., Lee, K.S., El-Sayed, I.H., El-Sayed, M.A.: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006). https://pubs.acs.org/doi/10.1021/jp057170oCrossRefGoogle Scholar
  14. 14.
    Calvo, P., Remuoon-Lopez, C., Vila-Jato, J.L., Alonso, M.J.: Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 63, 125–132 (1997). http://dx.doi.org/10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4
  15. 15.
    Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., Muller, R.N.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 110, 2574–2574 (2010). http://dx.doi.org/10.1021/cr900197gCrossRefGoogle Scholar
  16. 16.
    Khlebtsov, N.G., Dykman, L.A.: Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 111, 1–35 (2010).  https://doi.org/10.1016/j.jqsrt.2009.07.012CrossRefGoogle Scholar
  17. 17.
    Zhang, J., Saltzman, M.: Engineering biodegradable nanoparticles for drug and gene delivery. Chem. Eng. Prog. 109, 25–30 (2013)Google Scholar
  18. 18.
    Prashant, K.J., Ivan, H.S.: Au NPs target cancer. Nanotoday 2, 19–29 (2007)Google Scholar
  19. 19.
    Chen, C., Xing, G., Wang, J., Zhao, Y., Li, B., Tang, J., Jia, G., Wang, T., Sun, J., Xing, L., Yuan, H., Gao, Y., Meng, H., Chen, Z., Zhao, F., Chai, Z., Fang, X.: Multihydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett. 5, 2050–2057 (2005). http://dx.doi.org/10.1021/nl051624bCrossRefGoogle Scholar
  20. 20.
    AshaRani, P.V., Low Kah Mun, G., Hande, M.P., Valiyaveettil, S.: Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 3, 279–290 (2009).  https://doi.org/10.1021/nn800596wCrossRefGoogle Scholar
  21. 21.
    Hajipour, M.J., Fromm, K.M., Ashkarran, A. Akbar, de Aberasturi, D. Jimenez, de Larramendi, I.R., Rojo, T., Serpooshan, V., Parak, W.J., Mahmoudi, M.: Antibacterial properties of nanoparticles. Trends Biotechnol. 30, 499–511 (2012). http://dx.doi.org/10.1016/j.tibtech.2012.06.004CrossRefGoogle Scholar
  22. 22.
    Akhavan, O., Azimirad, R., Safa, S., Hasani, E.: CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts. J. Mater. Chem. 21, 9634 (2011).  https://doi.org/10.1039/c0jm04364hCrossRefGoogle Scholar
  23. 23.
    Pant, H.R., Pant, B., Sharma, R.K., Amarjargal, A., Kim, H.J., Park, C.H., Tijing, L.D., Kim, C.S.: Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process. Ceram. Int. 39, 1503–1510 (2013).  https://doi.org/10.1016/j.ceramint.2012.07.097CrossRefGoogle Scholar
  24. 24.
    Qu, Z., Liu, P., Yang, X., Wang, F., Zhang, W., Fei, C.: Microstructure and characteristic of BiVO4 prepared under different pH values: photocatalytic efficiency and antibacterial activity. Materials 9, 129 (2016).  https://doi.org/10.3390/ma9030129CrossRefGoogle Scholar
  25. 25.
    Yin, Q., Wu, W., Qiao, R., Ke, X., Hu, Y., Li, Z.: Glucoseassisted transformation of Ni-doped-ZnO@carbon to a Ni-doped-ZnO@void@SiO2 core–shell nanocomposite photocatalyst. RSC Adv. 6, 38653–38661 (2016).  https://doi.org/10.1039/C5RA26631ACrossRefGoogle Scholar
  26. 26.
    Dong, H., Wen, B., Melnik, R.: Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials. Sci. Rep. 4, 7037 (2014).  https://doi.org/10.1038/srep07037CrossRefGoogle Scholar
  27. 27.
    Ma, E.: Nanocrystalline materials: controlling plastic instability. Nat. Mater. 2, 7–8 (2003).  https://doi.org/10.1038/nmat797CrossRefGoogle Scholar
  28. 28.
    Todescato, F., Fortunati, I., Minotto, A., Signorini, R., Jasieniak, J., Bozio, R.: Engineering of semiconductor nanocrystals for light emitting applications. Materials 9, 672 (2016). http://dx.doi.org/10.3390/ma9080672CrossRefGoogle Scholar
  29. 29.
    Weiss, J., Takhistov, P., McClements, D.J.: Functional materials in food nanotechnology. J. Food Sci. 71, R107–R116 (2006).  https://doi.org/10.1111/j.1750-3841.2006.00195.xCrossRefGoogle Scholar
  30. 30.
    Lei, Y.-M., Huang, W.-X., Zhao, M., Chai, Y.-Q., Yuan, R., Zhuo, Y.: Electrochemiluminescence resonance energy transfer system: mechanism and application in ratiometric aptasensor for lead ion. Anal. Chem. 87, 7787–7794 (2015).  https://doi.org/10.1021/acs.analchem.5b01445CrossRefGoogle Scholar
  31. 31.
    Khlebtsov, N., Dykman, L.: Plasmonic nanoparticles, pp. 37–85 (2010). http://dx.doi.org/10.1201/9781439806296-c2Google Scholar
  32. 32.
    Unser, S., Bruzas, I., He, J., Sagle, L.: Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors 15, 15684–15716 (2015).  https://doi.org/10.3390/s150715684CrossRefGoogle Scholar
  33. 33.
    Ripp, S., Henry, T.B. (eds.): Biotechnology and Nanotechnology Risk Assessment: Minding and Managing the Potential Threats around Us, ACS Symposium Series. American Chemical Society, Washington DC (2011). http://dx.doi.org/10.1021/bk-2011-1079Google Scholar
  34. 34.
    Zhuang, J., Gentry, R.W.: Environmental application and risks of nanotechnology: a balanced view, pp. 41–67 (2011). http://dx.doi.org/10.1021/bk-2011-1079.ch003Google Scholar
  35. 35.
    Golobič, M., Jemec, A., Drobne, D., Romih, T., Kasemets, K., Kahru, A.: Upon exposure to Cu nanoparticles, accumulation of copper in the isopod Porcellio scaber is due to the dissolved Cu ions inside the digestive tract. Environ. Sci. Technol. 46, 12112–12119 (2012).  https://doi.org/10.1021/es3022182CrossRefGoogle Scholar
  36. 36.
    Masciangioli, T., Zhang, W.-X.: Peer reviewed: environmental technologies at the nanoscale. Environ. Sci. Technol. 37, 102A–108A (2003).  https://doi.org/10.1021/es0323998CrossRefGoogle Scholar
  37. 37.
    Swadeshmukul, S., Peng, Z., Kemin, W., Rovelyn, T., Weihong, T.: Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal. Chem. 73, 4988–4993 (2001).  https://doi.org/10.1021/AC010406+CrossRefGoogle Scholar
  38. 38.
    Tratnyek, P.G., Johnson, R.L.: Nanotechnologies for environmental cleanup. Nano Today 1, 44–48 (2006).  https://doi.org/10.1016/S1748-0132(06),70048-2CrossRefGoogle Scholar
  39. 39.
    Mueller, N.C., Nowack, B.: Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 42, 4447–4453 (2008).  https://doi.org/10.1021/es7029637CrossRefGoogle Scholar
  40. 40.
    Rogozea, E.A., Petcu, A.R., Olteanu, N.L., Lazăr, C.A., Cadar, D., Mihaly, M.: Tandem adsorption-photodegradation activity induced by light on NiO-ZnO p–n couple modified silica nanomaterials. Mater. Sci. Semicond. Process. 57, 1–11 (2017). http://dx.doi.org/10.1016/j.mssp.2016.10.006CrossRefGoogle Scholar
  41. 41.
    Olteanu, N.L., Lazăr, C.A., Petcu, A.R., Meghea, A., Rogozea, E.A., Mihaly, M.: “One-pot” synthesis of fluorescent Au@SiO2 and SiO2@Au nanoparticles. Arab. J. Chem. 9, 854–864 (2016). http://dx.doi.org/10.1016/j.arabjc.2015.12.014
  42. 42.
    Olteanu, N.L., Rogozea, E.A., Popescu, S.A., Petcu, A.R., Lazăr, C. A., Meghea, A., Mihaly, M.: “One-pot” synthesis of Au–ZnO–SiO2 nanostructures for sunlight photodegradation. J. Mol. Catal. A: Chem. 414, 148–159 (2016). http://dx.doi.org/10.1016/j.molcata.2016.01.007CrossRefGoogle Scholar
  43. 43.
    Rogozea, E.A., Olteanu, N.L., Petcu, A.R., Lazăr, C.A., Meghea, A., Mihaly, M.: Extension of optical properties of ZnO/SiO2 materials induced by incorporation of Au or NiO nanoparticles. Opt. Mater. 56, 45–48 (2016).  https://doi.org/10.1016/j.optmat.2015.12.020CrossRefGoogle Scholar
  44. 44.
    Kosmala, A., Wright, R., Zhang, Q., Kirby, P.: Synthesis of silver nano particles and fabrication of aqueous Ag inks for inkjet printing. Mater. Chem. Phys. 129, 1075–1080 (2011). http://dx.doi.org/10.1016/j.matchemphys.2011.05.064CrossRefGoogle Scholar
  45. 45.
    Holzinger, M., Le Goff, A., Cosnier, S.: Nanomaterials for biosensing applications: a review. Front. Chem. 2, 63 (2014). http://dx.doi.org/10.3389/fchem.2014.00063
  46. 46.
    Millstone, J.E., Kavulak, D.F.J., Woo, C.H., Holcombe, T.W., Westling, E.J., Briseno, A.L., Toney, M.F., Fre´chet, J.M.J.: Synthesis, properties, and electronic applications of size-controlled poly (3-hexylthiophene) nanoparticles. Langmuir 26, 13056–13061 (2010).  https://doi.org/10.1021/la1022938CrossRefGoogle Scholar
  47. 47.
    Shaalan, M., Saleh, M., El-Mahdy, M., El-Matbouli, M.: Recent progress in applications of nanoparticles in fish medicine: a review. Nanomed. Nanotechnol. Biol. Med. 12, 701–710 (2016). http://dx.doi.org/10.1016/j.nano.2015.11.005CrossRefGoogle Scholar
  48. 48.
    Cushing, B.L., Kolesnichenko, V.L., O’Connor, C.J.: Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004).  https://doi.org/10.1021/cr030027bCrossRefGoogle Scholar
  49. 49.
    O’Brien, S., Brus, L., Murray, C.B.: Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc. 123, 12085–12086 (2001).  https://doi.org/10.1021/ja011414aCrossRefGoogle Scholar
  50. 50.
    Avasare, V., Zhang, Z., Avasare, D., Khan, I., Qurashi, A.: Room-temperature synthesis of TiO2 nanospheres and their solar driven photoelectrochemical hydrogen production. Int. J. Energy Res. 39, 1714–1719 (2015).  https://doi.org/10.1002/er.3372CrossRefGoogle Scholar
  51. 51.
    Ning, F., Shao, M., Xu, S., Fu, Y., Zhang, R., Wei, M., Evans, D.G., Duan, X.: TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy Environ. Sci. 9, 2633–2643 (2016). http://dx.doi.org/10.1039/C6EE01092JCrossRefGoogle Scholar
  52. 52.
    Fang, X.-Q., Liu, J.-X., Gupta, V.: Fundamental formulations and recent achievements in piezoelectric nano-structures: a review. Nanoscale 5, 1716 (2013).  https://doi.org/10.1039/c2nr33531jCrossRefGoogle Scholar
  53. 53.
    Gawande, M.B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., Varma, R.S.: Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 116, 3722–3811 (2016).  https://doi.org/10.1021/acs.chemrev.5b00482CrossRefGoogle Scholar
  54. 54.
    Li, D., Baydoun, H., Verani, C.N., Brock, S.L.: Efficient water oxidation using CoMnP nanoparticles. J. Am. Chem. Soc. 138, 4006–4009 (2016).  https://doi.org/10.1021/jacs.6b01543CrossRefGoogle Scholar
  55. 55.
    Nagarajan, P.K., Subramani, J., Suyambazhahan, S., Sathyamurthy, R.: Nanofluids for solar collector applications: a review. Energy Procedia 61, 2416–2434 (2014).  https://doi.org/10.1016/j.egypro.2014.12.017CrossRefGoogle Scholar
  56. 56.
    Sagadevan, S.: A review on role of nanofluids for solar energy applications, vol. 3, p. 53 (2015). http://www.sciencepublishinggroup.com, http://dx.doi.org/10.11648/J.NANO.20150303.14
  57. 57.
    Young, K.J., Martini, L.A., Milot, R.L., Snoeberger, R.C., Batista, V.S., Schmuttenmaer, C.A., Crabtree, R.H., Brudvig, G.W.: Light-driven water oxidation for solar fuels. Coord. Chem. Rev. (2012). http://dx.doi.org/10.1016/j.ccr.2012.03.031
  58. 58.
    Zhou, Y., Dong, C.-K., Han, L., Yang, J., Du, X.-W.: Topdown preparation of active cobalt oxide catalyst. ACS Catal. 6, 6699–6703 (2016).  https://doi.org/10.1021/acscatal.6b02416CrossRefGoogle Scholar
  59. 59.
    Greeley, J., Markovic, N.M.: The road from animal electricity to green energy: combining experiment and theory in electrocatalysis. Energy Environ. Sci. 5 (2012). http://dx.doi.org/10.1039/c2ee21754fCrossRefGoogle Scholar
  60. 60.
    Liu, D., Li, C., Zhou, F., Zhang, T., Zhang, H., Li, X., Duan, G., Cai, W., Li, Y.: Rapid synthesis of monodisperse Au nanospheres through a laser irradiation-induced shape conversion, self-assembly and their electromagnetic coupling SERS enhancement. Sci. Rep. 5, 7686 (2015).  https://doi.org/10.1038/srep07686CrossRefGoogle Scholar
  61. 61.
    Liu, J., Liu, Y., Liu, N., Han, Y., Zhang, X., Huang, H., Lifshitz, Y., Lee, S.-T., Zhong, J., Kang, Z.: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 80(347), 970–974 (2015). http://dx.doi.org/10.1126/science.aaa3145CrossRefGoogle Scholar
  62. 62.
    Wang, D.-W., Su, D.: Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 7, 576 (2014). http://dx.doi.org/10.1039/c3ee43463jCrossRefGoogle Scholar
  63. 63.
    Wang, Z., Pan, X., He, Y., Hu, Y., Gu, H., Wang, Y., Wang, Z., Pan, X., He, Y., Hu, Y., Gu, H., Wang, Y.: Piezoelectric nanowires in energy harvesting applications. Adv. Mater. Sci. Eng. 2015, 1–21 (2015).  https://doi.org/10.1155/2015/165631CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Science, Chemistry DepartmentAl Baha UniversityBaljarashiSaudi Arabia

Personalised recommendations