Advertisement

Water in Termally Treated Bioapatites and Their Synthetic Analogues: 1H NMR Data

  • Olena A. Kalinichenko
  • Aleksandr B. BrikEmail author
  • Olga V. Frank-Kamenetskaya
  • Anatoliy M. Kalinichenko
  • Natalya O. Dudchenko
  • Anton M. Nikolaev
Conference paper
  • 100 Downloads
Part of the Lecture Notes in Earth System Sciences book series (LNESS)

Abstract

The molecular water incorporation in bioapatites obtained by bone pyrolysis at temperatures of 600–1100 °C has been investigated using in situ solid 1H nuclear magnetic resonance (solid 1H NMR) method in the temperature range of T = 25–300 °C and, in addition, 1H magic-angle spinning NMR, X-ray diffraction and infrared spectroscopy at room temperature. For comparison, synthetic analogues of bioapatite, precipitated hydroxyapatite (HA), HA with La impurity and carbonate fluorapatite were investigated as well. It was established that there are water molecules adsorbed on crystallites surfaces and bound in structure (H2Os) in studied apatites. More rigid H2Os1 molecules cause the doublet under normal conditions and the wide singlet at T ≥ 150 °C in situ 1H solid NMR spectra. In addition, H2Os3 molecules with reorientation mobility at T = 150–300 °C are presented in bioapatite and HA annealed at lower temperatures and La-HA. Water incorporation into structure of bioapatite annealed at 600–1100 °C and its synthetic analogues HA is established to be zeolite-like. Presumably, the configuration of cavities is formed in the apatite crystal scaffold during annealing of studied apatites. These cavities are related with vacancy clusters in original structures and connected between themselves and with surface by the channels with a diameter of not more than 0.3 nm. Water molecules trapped in smaller (H2Os2) and larger cavities (H2Os1) cause the doublet and singlet, respectively; water molecules in OH vacancies in channels (H2Os3) are due to narrow lines.

Keywords

Bioapatite Thermal treatment Solid-state 1H NMR Structural water Biomimetic apatites 

References

  1. Abragam A (1961) The principles of nuclear magnetism. Clarendon, OxfordGoogle Scholar
  2. Brik AB, Frank-Kamenetskaya OV, Dubok VA, Kalinichenko EA, Kuz’mina MA, Zorina ML, Dudchenko NO, Kalinichenko AM, Bagmut NN (2013) The features of isomorphic substitutions in synthetic carbonatefluorapatites. Mineralogie J (Ukraine) 35(3):3–10 (in Russian)Google Scholar
  3. Combes C, Cazalbou S, Rey C (2016) Apatite biominerals. Minerals 6:34–59CrossRefGoogle Scholar
  4. Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphate. Elsevier, Amsterdam London, New York, TokyoGoogle Scholar
  5. Figueiredo M, Fernando A, Martins G, Freitas J, Judas F, Figueiredo H (2010) Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceram Int 36:2383–2393CrossRefGoogle Scholar
  6. Frank-Kamenetskaya O, Kol’tsov A, Kuz’mina M, Zorina M, Poritskay L (2011) Ion substitutions and non-stoichiometry of carbonated apatite-(CaOH) synthesised by precipitation and hydrothermal methods. J Mol Struct 992:9–18CrossRefGoogle Scholar
  7. Frank-Kamenetskaya OV, Izatulina AR, Kuz’mina MA (2016) Ion substitutions, non-stoichiometry, and formation conditions of oxalate and phosphate minerals of the human body. Lecture Notes in Earth System Sciences, pp 425–442Google Scholar
  8. Gabuda SP, Rzhavin AF (1978) Nuclear magnetic resonance in crystal hydrates and hydrated proteins. Nauka, Novosibirsk (In Russian)Google Scholar
  9. Ivanova TI, Frank-Kamenetskaya OV, Kol’tsov AB, Ugolkov VL (2001) Crystal structure of calcium-deficient carbonated hydroxyapatite Thermal decomposition. J Solid State Chem 160:340–349CrossRefGoogle Scholar
  10. Kaflak A, Kolodziejski W (2011) Complementary information on water and hydroxyl groups in nanocrystalline carbonated hydroxyapatites from TGA, NMR and IR measurements. J Mol Struct 990:262–270CrossRefGoogle Scholar
  11. Kalinichenko EA, Brik AB, Nikolaev AM, Kalinichenko AM, Frank-Kamenetskaya OV, Dubok OV, Bagmut NN, Kuz’mina MA, Kolesnikov IE (2015) The structure features of synthetic apatites with REE impurities by data of spectroscopy and X-ray analysis methods: I Hydroxyapatites. Mineralogie J (Ukraine) 37(4):21–35 (In Russian)CrossRefGoogle Scholar
  12. Liu Q, Pan H, Chen Z, Matinlinna JP (2015) Insight into bone-derived biological apatite: ultrastructure and effect of thermal treatment. BioMed Res Int, ID 601025:1–11Google Scholar
  13. Pavlychev AA, Avrunin AS, Vinogradov AS, Filatova EO, Doctorov AA, Krivosenko YS, Samoilenko DO, Svirskiy GI, Konashuk AS, Rostov DA (2016) Local electronic structure and nanolevel hierarchical organization of bone tissue: theory and NEXAFS study. Nanotechnology 27(50):1–8CrossRefGoogle Scholar
  14. Sandstrom DE, Jarlbring M, Antzutkin ON, Forsling W (2006) A spectroscopic study of calcium surface sites and adsorbed iron species at aqueous fluorapatite by means of 1H and 31P MAS NMR. Langmuir 22(26):11060–11064CrossRefGoogle Scholar
  15. Tonsuaadu K, Gross KA, Pluduma L, Veiderma MA (2011) Review on the thermal stability of calcium apatites. J Therm Anal Calorim 110(2):647–659CrossRefGoogle Scholar
  16. Wilson EE, Awonusi A, Morris MD, Kohn DH, Tecklenburg MMJ, Beck LW (2006) Three structural roles for water in bone observed by solid-state NMR. Biophys J 90:3722–3731CrossRefGoogle Scholar
  17. Yoder CH, Pasteris JD, Worcester KN, Schermerhorn DV (2012) Structural water in carbonated hydroxylapatite and fluorapatite: confirmation by solid state H-2 NMR. Calcif Tissue Int 90:60–67CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Olena A. Kalinichenko
    • 1
  • Aleksandr B. Brik
    • 1
    Email author
  • Olga V. Frank-Kamenetskaya
    • 2
    • 3
  • Anatoliy M. Kalinichenko
    • 1
  • Natalya O. Dudchenko
    • 1
  • Anton M. Nikolaev
    • 2
    • 3
  1. 1.M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the National Academy of Sciences of UkraineKyivUkraine
  2. 2.Saint Petersburg State UniversitySaint PetersburgRussia
  3. 3.Institute of Silicate ChemistrySaint PetersburgRussia

Personalised recommendations