Advertisement

On the Generality of Organic and Inorganic

  • Galina A. Oleynikova
  • Elena G. PanovaEmail author
  • Yaroslav Yu. Fadin
Conference paper
  • 92 Downloads
Part of the Lecture Notes in Earth System Sciences book series (LNESS)

Abstract

Black shales are the object of interest to geologists, chemists and biologists. They are widely found around the world and have different ages. Black shales are rich in organic matter, clay minerals and sand grains. Black shale and extracted porosity solution (sub-micron fraction) were analyzed by ICP-MS. During the crystallization of the submicron fraction, structures similar to the macrostructure and similar to the organic world are formed. The structured porous matter microstructures show similarity to the macro- and micro world structures and elements of biological communities. Spheroids are ball-shaped seeds, formed from the nano-particles present in the initial sub-micron fraction. They serve as source elements for crystalloid structures.

Keywords

Black shales Sub-micron fraction Macro-, micro- and organic structures 

Notes

Acknowledgements

Analytical work was done in Chemical lab of All Russian Geological Institute, Research Centers of Saint Petersburg State University (“Geomodel”, “Methods of chemical analysis of matter”, “Microscopy and microanalysis”, “Nanotechnology”).

References

  1. Andersson A, Dahlman B, Gee D (1983) Kerogen and uranium resources in the Cambrian alum shales of the Billingen-Falbygden and Närke areas. Sweden Geol För 104:197–209CrossRefGoogle Scholar
  2. Andersson A, Dahlman B, Gee D, Snäll S (1985) The Scandinavian alum shales. Sveriges Geologiska Undersokning Ca 56:1–50Google Scholar
  3. Cartwright JH, Escribano B, Ignacio S-D (2008) The mesoscale morphologies of ice films: porous and biomorphic forms of ORMS. Astrophys J 687:1406–1414CrossRefGoogle Scholar
  4. Chi Fru E, Hemmingssona C, Callaca N, Pereza N, Panova E, Bromana C, El Albanic A (2017) Atmospheric weathering of Scandinavian alum shales and the fractionation of C, N and S isotopes. Appl Geochem 74:94–108CrossRefGoogle Scholar
  5. Cocks LR, Torsvik TH (2005) Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane’s identity. Earth-Sci Rev 72:39–66CrossRefGoogle Scholar
  6. Dronov AV, Ainsaar L, Kaljo D, Meidla T, Saadre T, Einasto R (2011) Ordovician of Baltoscandia: facies, sequences and sea-level changes. In: Gutierrez-Marco JC, Rabano I, Garcia-Bellido D (eds) Ordovician of the World. MadridGoogle Scholar
  7. Falk H, Lavergren U, Bergbäck B (2006) Metal mobility in alum shale from Öland, Sweden. J Geochem Explor 90:157–165CrossRefGoogle Scholar
  8. Fozia A, Bhatti HN, Ghauri MA, Bhatti IA, Asi MR (2009) Bioleaching of copper, cobalt and zinc from black shale by Penicillium notatum. Afr J Biotech 8(19):5038–5045Google Scholar
  9. Grechikhin LM (2004) Physics of nanoparticles and nanotechnologies. General fundamentals, mechanical, thermal and emission properties. Technoprint, Moscow (in Russian)Google Scholar
  10. Gusev VI (2007) Nanomaterials, nanostructures, nanotechnology. Phyzmatlit, Moscow (in Russian)Google Scholar
  11. Hade S, Soesoo A (2014) Estonian graptolite argillites revisited: a future resource? Oil Shale 31(1):4–18CrossRefGoogle Scholar
  12. Hints R, Hade S, Soesoo A, Voolma M (2014) Depositional framework of the East Baltic Tremadocian black shale revisited. Geol Fӧreningen 4:1–19Google Scholar
  13. Hulbert LJ, Gragare DE, Pactuno D (1992) Sedimentary nikel, zinc and platinum group element mineralization in Devonian black shales at Nick Property, Yukon, Canada: a new deposit type. Explor Min Geol 1(1):39–62Google Scholar
  14. Hochella MF Jr (2008) Nanogeoscience: from origins to cutting-edge applications. Elements 3(6):373–380CrossRefGoogle Scholar
  15. Kaljo D (1986) The Cambrian-Ordovician boundary in the Baltic-Ladoga clint area (North Estonia and Leningrad Region, Tallin)Google Scholar
  16. Ketris MP, Yudovich YE (2009) Estimation of clarkes for carbonaceous biolithes: World averages for trace elements contents in black shales and coals. Int J Coal Geol 78:135–148CrossRefGoogle Scholar
  17. Kucha H (1981) Precious metal alloys and organic matter in the Zechstein copper deposits, Poland. TMPM 28:1–16Google Scholar
  18. Lavergren U, Åström ME, Bergbäck B, Holmström H (2009) Mobility of trace elements in black shale assessed by leaching tests and sequential chemical extraction. Geochem Explor Environ Anal 9:71–79CrossRefGoogle Scholar
  19. Levental JS (1991) Comparison of organic geochemistry and metal enrichment in two black shales of Sweden and Devonian Chattanooga shale of United States. Mineralium Deposites 26(2):104–112Google Scholar
  20. Lewan MD, Buchardt B (1989) Irradiation of organic matter by uranium decay in the Alum shale, Sweden. Geochim Cosmochim Acta 53:1307–1322CrossRefGoogle Scholar
  21. Loog A, Kurvits T, Aruvali J, Petersell V (2001) Grain size analysis and mineralogy of the Tremadocian Dictyonema shale in Estonia. Oil Shale 18(4):281–297Google Scholar
  22. Loukola-Ruskeeniemi K, Lahtinen H (2013) Multiphase evolution in the black-shale-hosted Ni–Cu–Zn–Co deposit at Talvivaara, Finland. Ore Geol Rev 52:85–99CrossRefGoogle Scholar
  23. Männil R (1966) Evolution of the Baltic basin during the Ordovician. Valgus, Tallinn, p 201Google Scholar
  24. Nielsen AT, Schovsbo NH (20111) The Lower Cambrian of Scandinavia: depositional environment, sequence stratigraphy and palaeogeography. Earth-Sci Rev 107:207–310CrossRefGoogle Scholar
  25. Oleynikova GA, Panova EG (2011) Geochemistry of nanoparticles in the rocks, ores and waste. J Earth Sci Eng 1(3):63–84Google Scholar
  26. Oleynikova GA, Panova EG (2014) Dialysis of aqueous extracts of rocks as the method for studying the mobile species of chemical elements. Geochem Int 52(8):702–706CrossRefGoogle Scholar
  27. Pacton M, Fiet N, Gorin G (2007) Bacterial activity and preservation of sedimentary organicmatter: the role of exopolymeric substances. Geomicrobiol J 24:571–581CrossRefGoogle Scholar
  28. Pukkonen E, Rammo M (1992) Distribution of molybdenum and uranium in the Tremadoc Graptolite Argillite (Dictyonema Shale) of North-Western Estonia. Bull Geol Surv Estonia 2(1):3–15Google Scholar
  29. Puura V, Vaher R, Tuuling I (1999) Pre-Devonian landscape of the Baltic Oil-Shale Basin, NW of the Russian Platform. Geol Soc London 162:75–83CrossRefGoogle Scholar
  30. Sanei H, Petersen HI, Schovsbo NH, Jiang C, Goodsite ME (2014) Petrographic and geochemical composition of kerogen in the Furongian (U. Cambrian) alum shale, central Sweden: reflections on the petroleum generation potential. Coal Geol 132:158–169CrossRefGoogle Scholar
  31. Schulz H-M, Yang S, Panova E, Bechtel A (2019) The role of Pleistocene meltwater-controlled uranium leaching in assessing irradiation-induced alteration of organic matter and petroleum potential in the Tremadocian Koporie Formation (Western Russia). Geochem Cosmochim Acta 245:133–153CrossRefGoogle Scholar
  32. Voolma M, Soesoo A, Hade S, Hints R, Kallaste T (2013) Geochemical heterogeneity of the Estonian graptolite argillite. Oil Shale 30(3):377–401CrossRefGoogle Scholar
  33. Voronin DO, Panova EG (2018) Chemical weathering of Lower Paleozoic black shales of South Sweden. J Min Inst 230:116–122Google Scholar
  34. Wignall P, Newton R (2001) Black shales on the basin margin: a model based on examples from the Upper Jurassic of the Boulonnais, northern France. Sed Geol 144:335–356CrossRefGoogle Scholar
  35. Wilson MA, Tran NH, Milev AS, Volk H, Max LG (2008) Nanomaterials in soils. Geoderma 146:291–302CrossRefGoogle Scholar
  36. Yushkin NP, Askhbov AM, Rakin BI (eds) (2005) Nanomineralogy. Ultra- and microdispersed state of mineral substance. Saint-Petersburg (in Russian)Google Scholar
  37. Zhmur SI (1988) The origin of oil shale of the Ordovician of the Baltic syneclise. Message 1. Dictyonema shales. Lithol Miner Resour 6:78–86 (in Russian)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Galina A. Oleynikova
    • 1
  • Elena G. Panova
    • 2
    Email author
  • Yaroslav Yu. Fadin
    • 1
  1. 1.All Russian Geological InstituteSaint PetersburgRussia
  2. 2.Institute of Earth Science, Saint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations