Microbiology of the Laetolil Tuff 7 with 3.66 Ma Australopithecus Afarensis Footprints, Ngorongoro Conservation Area, Tanzania

  • Anatoly N. ZaitsevEmail author
  • Dmitry Yu. Vlasov
  • Marina S. Zelenskaya
  • Olga A. Zaitseva
  • Olga A. Pavlova
  • Anton R. Chakhmouradian
  • Anton I. Savchenok
  • Larissa Leach
  • Michael Leach
  • Joshua Mwankunda
Conference paper
Part of the Lecture Notes in Earth System Sciences book series (LNESS)


East Africa is one of the most important paleoanthropological localities on Earth. Laetoli and Olduvai Gorge (Tanzania) are among the world’s premier areas for Australopithecus afarensis, Paranthropus boisei, and Homo habilis remains. Laetoli is also unique in its preservation of footprint trails within Tuff 7 left by Australopithecus afarensis. Tuff 7 has been studied to characterize microorganisms living inside these tuffs and to estimate their potential involvement in destructive processes; 35 species of microfungi, as well as sterile white and dark mycelia were identified by cultural method. The results of the metagenomic analysis show that anamorphic ascomycetes are the predominant group in all samples. They occur as hyphae and mycelia inside the tuffs, and are concentrated in pores, microcracks and cavities. The number of micromycetes is moderate (up to 7000 CFU per gram of substrate). Typical cultivated microfungi are from genera Aspergillus and Fusarium. They are known as active destructors of natural and artificial substrates and can colonize building materials. Molecular genetic methods revealed a large group of different bacteria (23 phyla) within the tuff. The microbiota consists mostly of Actinobacteria, Proteobacteria, Bacteroidetes and Cyanobacteria. Their relative distribution shows the preferential occurrence of Bacteroidetes in the upper part of stratigraphic sections (soil), and concentration of Actinobacteria and Proteobacteria within the tuffs. Exposure of the Footprint tuff could lead to the development of photosynthetic microorganisms (Cyanobacteria). We conclude that microbiological activity within the study area appears to be moderate and the Footprint Tuff does not presently require any treatment with biocides. However, the presence of black biofilms on the surface of the Footprint conservation mound concrete shows that biodestruction does occur.


Australopithecus afarensis Footprint Tuff Microfungi Bacteria Laetoli Tanzania 



We thank M.N. Pagolskaya (St. Petersburg) and J.S. (J4) Pyuza (GMP Consulting Engineers Ltd.) for help during field work at Laetoli. Figure 36.1 is adapted by permission from the Jet Propulsion Laboratory (California Institute of Technology). We would like to thank the Tanzania Commission for Science and Technology for granting permission to conduct research (2016-245-NA-2016-181, 2017-234-NA-2016-115 for A.N. Zaitsev, 2016-242-NA-2016-181 for A.I. Savchenok). Field work at Laetoli was supported by Peter Rich Architects—GMP Consulting Engineers—Laetoli JV (Arusha), St. Petersburg State University (grants 0.42.955.2016 and 3.42.740.2017) and Ngorongoro Conservation Area Authorities (Tanzania). At various stages, this research was funded by the Peter Rich Architects—GMP Consulting Engineers—Laetoli JV (Arusha), Natural History Museum (London) and St. Petersburg State University (Resource Centres for X-ray Diffraction Studies, Geo-Environmental Research and Modelling, and Molecular and Cell Technologies and Culture Collection of Microorganisms, grant 3.20.1855.2015). The research results were partially obtained on the equipment of the Resource Center “Development of Cellular and Molecular Technologies” of St. Petersburg State University.


  1. Barnett HL (1967) Illustrated genera of imperfect fungi. 2nd edn. Minneapolis, MinnesotaGoogle Scholar
  2. Barron GL (1968) The genera of hyphomycetes from soil. Baltimore. 364pGoogle Scholar
  3. Bilai VI, Kurbatskaya ZA (1990) The determinant of toxigenic micromycetes. Naukova Dumka, Kiev (in Russian)Google Scholar
  4. Cela-Conde CJ, Ayala FJ (2007) Human evolution: trails from the past. Oxford Press, New YorkGoogle Scholar
  5. De Hoog GS, Guarro J (1995) Atlas of clinical fungi. CBS/Universitat Rovira i VirgiliGoogle Scholar
  6. De Hoog GS, Guarro J, Gene J, Figueras MJ (2009) Atlas of clinical fungi: the ultimate benchtool for diagnostics. A pilot version of the 3rd edn, CD-ROM. Centraalbureau voor Schimmelcultures, KNAW Fungal Biodiversity Centre/Universitat Rovira i Virgili, Utrecht, NetherlandsGoogle Scholar
  7. Deino AL (2011) 40Ar/39Ar Dating of Laetoli, Tanzania. Paleontology and geology of Laetoli: human evolution in context, vol 1. Springer, Dordrecht, pp 77–97CrossRefGoogle Scholar
  8. Dornieden T, Gorbushina AA, Krumbein WE (2000) Patina (physical and chemical interactions of sub-aerial biofilms with objects of art). International conference on microbiology and conservation. Plenum Press, New York, pp 105–120Google Scholar
  9. Ellis MB (1971) Dematiaceous hyphomycetes. KewGoogle Scholar
  10. Ellis MB (1976) More dematiaceous hyphomycetes. KewGoogle Scholar
  11. Gaylarde CC, Gaylarde PM (2005) A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. Int Biodeterior Biodegrad 55(2):131–139CrossRefGoogle Scholar
  12. Getty Conservation Institute (1996) Laetoli project: conservation of the Hominid Trackway Site at Laetoli, Tanzania: Report on the 1995 Field Season (July 3–September 2, 1995). Los Angeles: Getty Conservation Institute.
  13. Gu JD, Ford TE, Berke NS, Mitchell R (1998) Biodeterioration of concrete by the fungus Fusarium. Int Biodeterior Biodegrad 41(2):101–109CrossRefGoogle Scholar
  14. Harrison T (ed) (2011) Paleontology and geology of Laetoli: human evolution in context, vol 1. Springer, DordrechtGoogle Scholar
  15. Hay RL (1986) Role of tephra in the preservation of fossils in Cenozoic deposits in East Africa. Geol Soc Spec Pub 25:339–344CrossRefGoogle Scholar
  16. Hermanides-Nijhof EJ (1977) Aureobasidium and allied genera. Stud Mycol 15:141–177Google Scholar
  17. Hesham A (2009) Bioweathering and biotransformation of granitic rock minerals by actinomycetes. Microb Ecol 58:753–761CrossRefGoogle Scholar
  18. Ivanushkina E (2003) Genus Aspergillus: nomenclature, classification, distribution. In: New to the taxonomy and nomenclature of fungi. Moscow. pp 136–163 (in Russian)Google Scholar
  19. Kirk PM, Cannon PF, David JC, Stalpers JA (eds) (2001) Ainsworth and Bisby’s Dictionary of the fungi, 9th edn. CABI Publishing, WallingfordGoogle Scholar
  20. Koval EZ, Sidorenko LP (1989) Mycodestructors of industrial materials. Naukova Dumka, Kiev (in Russian)Google Scholar
  21. Leakey MD, Hay RL (1979) Pliocene footprints in the Laetolil Beds at Laetoli, northern Tanzania. Nature 278:317–323CrossRefGoogle Scholar
  22. Masao FN, Ichumbaki EB, Cherin M, Barili A, Boschian G, Iurino DA, Menconero S, Moggi-Cecchi J, Manzi G (2016) New footprints from Laetoli (Tanzania) provide evidence for marked body size variation in early hominins. eLife 5, e19568Google Scholar
  23. May E, Jones M, Mitchell J (2008) Heritage microbiology and science. Microbes, monuments and maritime material. Special Publication 315. The Royal Society of ChemistryGoogle Scholar
  24. McNamara CJ, Mitchell R (2005) Microbial deterioration of historical stone. Front Ecol Environ 3(8):445–451CrossRefGoogle Scholar
  25. Mitchell R, McNamara CJ (2010) Cultural heritage microbiology. Fundamental studies in conservation science. American Society for Microbiology Press, WashingtonGoogle Scholar
  26. Rayner ADM, Griffith GS, Ainsworth AM (1995) Mycelial interconnectedness. In: Growing fungus. Springer. pp 21–40CrossRefGoogle Scholar
  27. Saarela M, Alakomi HL, Suihko ML, Maunuksela L, Raaska L, Mattila-Sandholm T (2004) Heterotrophic microorganisms in air and biofilm samples from Roman catacombs, with special emphasis on actinobacteria and fungi. Int Biodeterior Biodegrad 54:27–37CrossRefGoogle Scholar
  28. Saiz-Jimenez C (1999) Biogeochemistry of weathering processes in monuments. Geomicrobiol J 16:27–37CrossRefGoogle Scholar
  29. Seckbach J (ed) (2007) Algae and cyanobacteria in extreme environments. Springer, DordrechtGoogle Scholar
  30. Seiler S, Plamann M (2003) The genetic basis of cellular morphogenesis in the filamentous fungus Neurospora crassa. Mol Biol Cell 14:4352–4364CrossRefGoogle Scholar
  31. Simon-Nobbe B, Denk U, Pöll V, Rid R, Breitenbach M (2008) The spectrum of fungal allergy. Allergy Immunol 145:58–86CrossRefGoogle Scholar
  32. Sturm EV, Frank-Kamenetskaya O, Vlasov D, Zelenskaya M, Sazanova K, Rusakov A, Kniep R (2015) Crystallization of calcium oxalate hydrates by interaction of calcite Marble with fungus Aspergillus niger. Am Miner 100(8):2559–2565CrossRefGoogle Scholar
  33. Sutton DA, Fothergil AW, Rinaldi MG (1998) Guide to clinically significant fungi. Williams & WilkinsGoogle Scholar
  34. Sutton D, Fothergill A, Rinaldi M (2001) Determinant of pathogenic and opportunistic fungi. Mir, Moscow (in Russian)Google Scholar
  35. Tobias PV (1967) Olduvai Gorge, vol 2. Cambridge University PressGoogle Scholar
  36. Tomaselli L, Lamenti G, Bosco M, Tiano P (2000) Biodiversity of photosynthetic micro-organisms dwelling on stone monuments. Int Biodeterior Biodegrad 46:251–258CrossRefGoogle Scholar
  37. Urzi C, Krumbein WE (1994) Microbiological impacts on the cultural heritage. Durability and changes: the science, responsibility, and cost of sustaining cultural heritage. Wiley, New York, pp 107–135Google Scholar
  38. von Arx JA (1974) The genera of fungi sporulating in pure culture. Cramer, VaduzGoogle Scholar
  39. Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46:343–368CrossRefGoogle Scholar
  40. Young ME, Alakomi HL, Fortune I, Gorbushina AA, Krumbein WE, Maxwell I, McCullagh C, Robertson P, Saarela M, Valero J, Vendrell M (2008) Development of a biocidal treatment regime to inhibit biological growths on cultural heritage: BIODAM. Environ Geol 56:631–641CrossRefGoogle Scholar
  41. Zaitsev AN, Spratt J, Sharygin VV, Wenzel T, Zaitseva OA, Markl G (2015) Mineralogy of the Laetolil footprint tuff: a comparison with possible volcanic sources from the Crater Highlands and Gregory Rift. J Afr Earth Sc 111:214–221CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anatoly N. Zaitsev
    • 1
    • 3
    Email author
  • Dmitry Yu. Vlasov
    • 2
  • Marina S. Zelenskaya
    • 2
  • Olga A. Zaitseva
    • 4
  • Olga A. Pavlova
    • 5
    • 9
  • Anton R. Chakhmouradian
    • 6
  • Anton I. Savchenok
    • 1
  • Larissa Leach
    • 7
  • Michael Leach
    • 7
  • Joshua Mwankunda
    • 8
  1. 1.Department of MineralogySaint Petersburg State UniversitySaint PetersburgRussia
  2. 2.Saint Petersburg State UniversitySaint PetersburgRussia
  3. 3.Image and Analysis Centre, The Natural History MuseumLondonUK
  4. 4.The Manege, Central Exhibition HallSaint PetersburgRussia
  5. 5.Beagle Ltd.Saint PetersburgRussia
  6. 6.Department of Geological SciencesUniversity of ManitobaWinnipegCanada
  7. 7.GMP Consulting Engineers Ltd.ArushaTanzania
  8. 8.Ngorongoro Conservation Area AuthorityArushaTanzania
  9. 9.Resource Center “Development of Cellular and Molecular Technologies”, Saint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations