Advertisement

Sol-Gel Derived TiO2 and Epoxy-Titanate Protective Coatings: Structure, Property, Fungicidal Activity and Biomineralization Effects

  • Olga A. ShilovaEmail author
  • Dmitry Yu. Vlasov
  • Marina S. Zelenskaya
  • Yuliya V. Ryabusheva
  • Tamara V. Khamova
  • Irina B. Glebova
  • Alexandr A. Sinelnikov
  • Alexandr M. Marugin
  • Olga V. Frank-Kamenetskaya
Conference paper
  • 99 Downloads
Part of the Lecture Notes in Earth System Sciences book series (LNESS)

Abstract

The mesostructural, phase compositional, photocatalytic and anti-fungicidal properties of sol-gel-derived TiO2- and epoxy-titanate coatings are investigated. The effect of epoxy-titanate coatings doped with titanium dioxide nanoparticles (TiO2 P25) and detonation nanodiamonds on inhibiting the growth and development of a number of mold micromycetes is discussed. Biomineralization phenomena in epoxy-titanate coatings that occur under the influence of a number of mold fungi are found.

Keywords

Sol-gel technology TiO2-coatings Epoxy-titanate coatings TiO2 nanoparticles Detonation nanodiamond Photocatalytic activity Soft biocides Mold fungi Biomineralization 

Notes

Acknowledgements

This work was partially supported by the Russian Foundation of Basic Research (project RFBR—18-29-05031mk). The research results were partially obtained on the equipment of The Collective Use Center of Voronezh State University (URL: http://ckp.vsu.ru).

References

  1. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press Inc., San-DiegoGoogle Scholar
  2. Calia A, Colangiuli D, Lettieri M, Matera L (2013) A deep knowledge of the behaviour of multi-component products for stone protection by an integrated analysis approach. Prog Org Coat 76:893–899CrossRefGoogle Scholar
  3. Chou JLH, Tung Chun-Ting, Lin Yu-Ming, Li Ai-Kang (2008) Preparation and optical properties of titania/epoxy nanocomposite coatings. Mater Let 62(19):3416–3418CrossRefGoogle Scholar
  4. Doehne E, Price CA (2010) Stone conservation. An overview of current research, 2nd edn. The Getty Conservation Institute, LAGoogle Scholar
  5. Frank-Kamenetskaya OV, Vlasov DYu, Shilova OA (2011) Biogenic crystal genesis on a carbonate rock monument surface: the main factors and mechanisms, the development of nanotechnological ways of inhibition. In: Krivovichev SV (ed) Minerals as advanced materials II. Springer, Berlin, HeidelbergGoogle Scholar
  6. Goffredo GB, Terlizzi V, Placido Munafò P (2017) Multifunctional TiO2-based hybrid coatings on limestone: initial performances and durability over time. J Build Eng 14:134–149CrossRefGoogle Scholar
  7. Jalvo B, Faraldos M, Bahamonde A, Rosal R (2017) Antimicrobial and antibiofilm efficacy of self-cleaning surfaces functionalized by TiO2 photocatalytic nanoparticles against Staphylococcus aureus and Pseudomonas putida. J Hazard Mater 340:160–170CrossRefGoogle Scholar
  8. Khamova TV, Shilova OA, Vlasov DY, Ryabusheva YuV, Mikhal’chukc VM, Ivanov VK, Frank-Kamenetskaya OV, Marugin AM, Dolmatov VYu (2012) Bioactive coatings based on nanodiamond modified epoxy siloxane sols for stone materials. Inorg Mater 48(7):702–708CrossRefGoogle Scholar
  9. Khamova TV, Frank-Kamenetskaya OV, Shilova OA, Chelibanov VP, Marugin AM, Yasenko EA, Kuz’mina MA, Baranchikov AE, Ivanov VK (2018) Hydroxyapatite/anatase photocatalytic core–shell composite prepared by sol-gel processing. Crystallogr Rep 63(2):254–260CrossRefGoogle Scholar
  10. Kugel A, Stafslien S, Chisholm BJ (2011) Antimicrobial coatings produced by “tethering” biocides to the coating matrix: a comprehensive review. Progr Org Coat 72(3):222–252CrossRefGoogle Scholar
  11. La Russam MF, Ruffolo SA, Rovella N, Belfiore CM, Palermo AM, Guzzi MT, Crisci GM (2012) Multifunctional TiO2 coatings for Cultural Heritage. Progr Org Coat 74:186–191CrossRefGoogle Scholar
  12. Li S, Zhang H, Zhao C, Wang X (2006) New epoxy/silica titania hybrid materials prepared by the sof-gel process. J Appl Polym Sci 101(2):1075–1081CrossRefGoogle Scholar
  13. Mack RC, Grimmer AE (2000) Assessing cleaning and water-repellent treatments for historic masonry buildings. In: Preservation Briefs—Technical Preservation Services—National Park Service, U.S. Department of the Interior. https://www.nps.gov/tps/how-to-preserve/preservedocs/preservation-briefs/01Preserve-Brief-Cleaning.pdf
  14. Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J Catal 203(1):82–86CrossRefGoogle Scholar
  15. Ozerin AN, Kurkin TS, Ozerina LA, Dolmatov VYu (2008) X-ray diffraction study of the structure of detonation nanodiamonds. Crystal Rep 53(1):60–67CrossRefGoogle Scholar
  16. Quagliarini E, Bondioli F, Goffredo GB, Cordoni K, Munafó P (2012) Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Constr Build Mater 37:51–57CrossRefGoogle Scholar
  17. Rubab Z, Afzal A, Siddiqi HM, Saeed S (2014) Preparation, characterization, and enhanced thermal and mechanical properties of epoxy-titania composites. Sci World J ID 515739 (7pp)Google Scholar
  18. Shapovalov VI, Shilova OA, Smirnova IV, Zav’yalov AV, Lapshin AE, Magdysyuk OV, Panov MF, Plotnikov VV, Shutova NS (2011) Modification of the glass surface by titanium dioxide films synthesized through the sol-gel method. Glass Phys Chem 37(2):150–156CrossRefGoogle Scholar
  19. Shilova O (2004) Phenomena of a phase separation and crystallisation in nanosized spin-on glass films used in microelectronics. Glass Technol 45(2):59–61Google Scholar
  20. Shilova OA, Khamova TV, Vlasov DJ, Marugin AM, Frank-Kamenetskaya OV (2014) Composition for obtaining matrix with photocatalytic activity. Patent RU 2518124 Bull 16Google Scholar
  21. Shpak AP, Shilov VV, Shilova OA, Kunitskii YA (2004) Diagnosis of nanosystems. Multi-level fractal nanostructures. Technical Center of the National Academy of Sciences of Ukraine, Kiev (in Russian)Google Scholar
  22. Voronkov MG, Shorokhov NV (1959) The use of organosilicon compounds to improve the water resistance and durability of building materials. Constr Mater 7:12–17 (in Russian)Google Scholar
  23. Voronkov MG, Shorokhov NV (1963) Water repellent coatings in construction. Publishing House of the Academy of Sciences of the Latvian SSR, Riga (in Russian)Google Scholar
  24. Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeter Biodegrad 46(4):343–368CrossRefGoogle Scholar
  25. Wu L, Baghdachi J (eds) (2015) Functional polymer coatings: principles, methods, and applications. Wiley, Hoboken, NJGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Olga A. Shilova
    • 1
    • 2
    Email author
  • Dmitry Yu. Vlasov
    • 3
  • Marina S. Zelenskaya
    • 3
  • Yuliya V. Ryabusheva
    • 3
  • Tamara V. Khamova
    • 1
  • Irina B. Glebova
    • 1
  • Alexandr A. Sinelnikov
    • 4
  • Alexandr M. Marugin
    • 5
  • Olga V. Frank-Kamenetskaya
    • 1
    • 2
  1. 1.Institute of Silicate Chemistry, Russian Academy of SciencesSaint PetersburgRussia
  2. 2.Saint Petersburg State Electrotechnical University “LETI”Saint PetersburgRussia
  3. 3.Saint Petersburg State UniversitySaint PetersburgRussia
  4. 4.Voronezh State UniversityVoronezhRussia
  5. 5.OPTEC JSCSaint PetersburgRussia

Personalised recommendations