Skip to main content

Biomedical Materials in Dentistry

  • Chapter
  • First Online:
Applications of Biomedical Engineering in Dentistry

Abstract

Any progress in the science and technology of dental biomedical materials has been widely influential in dentistry. The main goal of this field is manufacturing of biocompatible materials to replace the lost tissues or to restore disturbed functions of the orofacial region. Although dental biomaterials have had a huge impact on the quality of life of patients, the development of new materials to improve dental treatments is limited. The more enhanced progress in this field to obtain superior function from external materials requires a better understanding of oral tissues, the materials already in used for dental application, as well as the interactions of these materials with the tissues. This chapter reviews main four groups of biomaterials used in dentistry, including (1) metallic biomedicals, such as titanium, dental amalgam, and alloys for metallic restorations; (2) polymeric and hydrogel biomaterials, such as bonding and luting agents, prosthetic polymers and resins, endodontic obturation materials, periodontal dressings, and sutures; (3) ceramic biomaterials, such as hydroxyapatite, bioactive glasses, endodontic filling materials, and zirconia; and (4) composite biomaterials, such as resin-based composites, GIOMERS, and bone augmentation materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clinical applications of biomaterials. (1982). NIH Consens Statement.

    Google Scholar 

  2. Aaseth, J., Hilt, B., & Bjorklund, G. (2018). Mercury exposure and health impacts in dental personnel. Environmental Research, 164, 65–69.

    Article  Google Scholar 

  3. Larson, T. D. (2015). Amalgam restorations: To bond or not. Northwest Dentistry, 94(5), 35–37.

    Google Scholar 

  4. Roach, M. (2007). Base metal alloys used for dental restorations and implants. Dental Clinics of North America, 51(3), 603–627, vi.

    Article  Google Scholar 

  5. Shen, Y., et al. (2013). Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. Journal of Endodontia, 39(2), 163–172.

    Article  Google Scholar 

  6. Thompson, S. A. (2000). An overview of nickel-titanium alloys used in dentistry. International Endodontic Journal, 33(4), 297–310.

    Article  MathSciNet  Google Scholar 

  7. Wolcott, J. (2003). Nickel-titanium usage and breakage: An update. Compendium of Continuing Education in Dentistry, 24(11), 852, 854, 856 passim.

    Google Scholar 

  8. Roberts, H. W., et al. (2009). Metal-ceramic alloys in dentistry: A review. Journal of Prosthodontics, 18(2), 188–194.

    Article  Google Scholar 

  9. Bosshardt, D. D., Chappuis, V., & Buser, D. (2017). Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontology 2000, 73(1), 22–40.

    Article  Google Scholar 

  10. Rupp, F., et al. (2018). Surface characteristics of dental implants: A review. Dental Materials, 34(1), 40–57.

    Article  Google Scholar 

  11. Jafarzadeh Kashi, T. S., et al. (2011). An in vitro assessment of the effects of three surface treatments on repair bond strength of aged composites. Operative Dentistry, 36(6), 608–617.

    Article  Google Scholar 

  12. Matos, A. B., et al. (2017). Bonding efficiency and durability: Current possibilities. Brazilian Oral Research, 31(suppl 1), e57.

    Article  Google Scholar 

  13. Scotti, N., et al. (2017). New adhesives and bonding techniques. Why and when? The International Journal of Esthetic Dentistry, 12(4), 524–535.

    Google Scholar 

  14. Sofan, E., et al. (2017). Classification review of dental adhesive systems: From the IV generation to the universal type. Annali di Stomatologia (Roma), 8(1), 1–17.

    Article  Google Scholar 

  15. Hill, E. E. (2007). Dental cements for definitive luting: A review and practical clinical considerations. Dental Clinics of North America, 51(3), 643–658, vi.

    Article  Google Scholar 

  16. Lad, P. P., et al. (2014). Practical clinical considerations of luting cements: A review. Journal of International Oral Health, 6(1), 116–120.

    Google Scholar 

  17. Vahid Dastjerdie, E., et al. (2012). In-vitro comparison of the antimicrobial properties of glass ionomer cements with zinc phosphate cements. Iranian Journal of Pharmaceutical Research, 11(1), 77–82.

    Google Scholar 

  18. Patil, S. B., Naveen, B. H., & Patil, N. P. (2006). Bonding acrylic teeth to acrylic resin denture bases: A review. Gerodontology, 23(3), 131–139.

    Article  Google Scholar 

  19. Rodrigues, S., Shenoy, V., & Shetty, T. (2013). Resilient liners: A review. Journal Indian Prosthodontic Society, 13(3), 155–164.

    Google Scholar 

  20. Takamata, T., & Setcos, J. C. (1989). Resin denture bases: Review of accuracy and methods of polymerization. The International Journal of Prosthodontics, 2(6), 555–562.

    Google Scholar 

  21. Shanahan, D. J., & Duncan, H. F. (2011). Root canal filling using Resilon: A review. British Dental Journal, 211(2), 81–88.

    Article  Google Scholar 

  22. Gatewood, R. S. (2007). Endodontic materials. Dental Clinics of North America, 51(3), 695–712, vii.

    Article  Google Scholar 

  23. Ma, X., et al. (2016). Materials for retrograde filling in root canal therapy. Cochrane Database of Systematic Reviews, 12, CD005517.

    Google Scholar 

  24. Najeeb, S., et al. (2016). Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. Journal of Prosthodontic Research, 60(1), 12–19.

    Article  Google Scholar 

  25. Schwitalla, A., & Muller, W. D. (2013). PEEK dental implants: A review of the literature. The Journal of Oral Implantology, 39(6), 743–749.

    Article  Google Scholar 

  26. Tayebi, L., et al. (2018). 3D-printed membrane for guided tissue regeneration. Materials Science and Engineering: C, 84, 148–158.

    Article  Google Scholar 

  27. Torshabi, M., Nojehdehian, H., & Tabatabaei, F. S. (2017). In vitro behavior of poly-lactic-co-glycolic acid microspheres containing minocycline, metronidazole, and ciprofloxacin. Journal of Investigative and Clinical Dentistry, 8(2), e12201.

    Article  Google Scholar 

  28. Freedman, M., & Stassen, L. F. (2013). Commonly used topical oral wound dressing materials in dental and surgical practice--a literature review. Journal of the Irish Dental Association, 59(4), 190–195.

    Google Scholar 

  29. Selvi, F., et al. (2016). Effects of different suture materials on tissue healing. Journal of Istanbul University Faculty of Dentistry, 50(1), 35–42.

    Article  Google Scholar 

  30. Hallmann, L., Ulmer, P., & Kern, M. (2018). Effect of microstructure on the mechanical properties of lithium disilicate glass-ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 82, 355–370.

    Article  Google Scholar 

  31. McLaren, E. A., & Figueira, J. (2015). Updating classifications of ceramic dental materials: A guide to material selection. Compendium of Continuing Education in Dentistry, 36(6), 400–405; quiz 406, 416.

    Google Scholar 

  32. Silva, L. H. D., et al. (2017). Dental ceramics: A review of new materials and processing methods. Brazilian Oral Research, 31(suppl 1), e58.

    Article  Google Scholar 

  33. Turon-Vinas, M., & Anglada, M. (2018). Strength and fracture toughness of zirconia dental ceramics. Dental Materials, 34(3), 365–375.

    Article  Google Scholar 

  34. Zhang, Y., & Kelly, J. R. (2017). Dental ceramics for restoration and metal veneering. Dental Clinics of North America, 61(4), 797–819.

    Article  Google Scholar 

  35. Eliaz, N., & Metoki, N. (2017). Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials (Basel), 10(4).

    Google Scholar 

  36. Prati, C., & Gandolfi, M. G. (2015). Calcium silicate bioactive cements: Biological perspectives and clinical applications. Dental Materials, 31(4), 351–370.

    Article  Google Scholar 

  37. Xu, H. H., et al. (2017). Calcium phosphate cements for bone engineering and their biological properties. Bone Research, 5, 17056.

    Article  Google Scholar 

  38. Ali, S., Farooq, I., & Iqbal, K. (2014). A review of the effect of various ions on the properties and the clinical applications of novel bioactive glasses in medicine and dentistry. The Saudi Dental Journal, 26(1), 1–5.

    Article  Google Scholar 

  39. Chen, L., Shen, H., & Suh, B. I. (2013). Bioactive dental restorative materials: A review. American Journal of Dentistry, 26(4), 219–227.

    Google Scholar 

  40. Ahangari, Z., et al. (2017). Comparison of the antimicrobial efficacy of calcium hydroxide and photodynamic therapy against Enterococcus faecalis and Candida albicans in teeth with periapical lesions; an in vivo study. Journal of Lasers in Medical Science, 8(2), 72–78.

    Article  MathSciNet  Google Scholar 

  41. Torabinejad, M., Parirokh, M., & Dummer, P. M. H. (2018). Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview – part II: Other clinical applications and complications. International Endodontic Journal, 51(3), 284–317.

    Article  Google Scholar 

  42. Raghavendra, S. S., et al. (2017). Bioceramics in endodontics – A review. Journal of Istanbul University Faculty of Dentistry, 51(3 Suppl 1), S128–S137.

    Google Scholar 

  43. Cionca, N., Hashim, D., & Mombelli, A. (2017). Zirconia dental implants: Where are we now, and where are we heading? Periodontology 2000, 73(1), 241–258.

    Article  Google Scholar 

  44. Kubasiewicz-Ross, P., et al. (2017). Zirconium: The material of the future in modern implantology. Advances in Clinical and Experimental Medicine, 26(3), 533–537.

    Article  Google Scholar 

  45. Ilie, N., & Hickel, R. (2011). Resin composite restorative materials. Australian Dental Journal, 56(Suppl 1), 59–66.

    Article  Google Scholar 

  46. Vaderhobli, R. M. (2011). Advances in dental materials. Dental Clinics of North America, 55(3), 619–25, x.

    Article  Google Scholar 

  47. Ikemura, K., et al. (2008). A review of chemical-approach and ultramorphological studies on the development of fluoride-releasing dental adhesives comprising new pre-reacted glass ionomer (PRG) fillers. Dental Materials Journal, 27(3), 315–339.

    Article  Google Scholar 

  48. Kramer, N., & Frankenberger, R. (2007). Compomers in restorative therapy of children: A literature review. International Journal of Paediatric Dentistry, 17(1), 2–9.

    Article  Google Scholar 

  49. Tabatabaei, F. S., et al. (2016). Different methods of dentin processing for application in bone tissue engineering: A systematic review. Journal of Biomedical Materials Research. Part A, 104(10), 2616–2627.

    Article  Google Scholar 

  50. Singh, J., et al. (2016). Bone Gaft materials: Dental aspects. International Journal of Novel Research in Healhcare and Nursing, 3(1), 99–103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lobat Tayebi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tabatabaei, F.S., Torres, R., Tayebi, L. (2020). Biomedical Materials in Dentistry. In: Tayebi, L. (eds) Applications of Biomedical Engineering in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-21583-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21583-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21582-8

  • Online ISBN: 978-3-030-21583-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics