Advertisement

From DB-nets to Coloured Petri Nets with Priorities

  • Marco Montali
  • Andrey RivkinEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11522)

Abstract

The recently introduced formalism of DB-nets has brought in a new conceptual way of modelling complex dynamic systems that equally account for the process and data dimensions, considering local data as well as persistent, transactional data. DB-nets combine a coloured variant of Petri nets with name creation and management (which we call \(\nu \)-CPN), with a relational database. The integration of these two components is realized by equipping the net with special “view” places that query the database and expose the resulting answers to the net, with actions that allow transitions to update the content of the database, and with special arcs capturing compensation in case of transaction failure. In this work, we study whether this sophisticated model can be encoded back into \(\nu \)-CPNs. In particular, we show that the meaningful fragment of DB-nets where database queries are expressed using unions of conjunctive queries with inequalities can be faithfully encoded into \(\nu \)-CPNs with transition priorities. This allows us to directly exploit state-of-the-art technologies such as CPN Tools to simulate and analyse this relevant class of DB-nets.

Notes

Acknowledgments

This work has been partially supported by the UNIBZ projects PWORM and REKAP.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley, Boston (1995)zbMATHGoogle Scholar
  2. 2.
    Calvanese, D., De Giacomo, G., Montali, M., Patrizi, F.: First-order mu-calculus over generic transition systems and applications to the situation calculus. Inf. Comput. 259(3), 328–347 (2018)CrossRefGoogle Scholar
  3. 3.
    Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data aware process analysis: a database theory perspective. In: Proceedings of PODS (2013)Google Scholar
  4. 4.
    Drescher, C., Thielscher, M.: A fluent calculus semantics for ADL with plan constraints. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 140–152. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87803-2_13CrossRefGoogle Scholar
  5. 5.
    Emmerich, W., Gruhn, V.: Funsoft nets: a petri-net based software process modeling language. In: Proceedings of IWSSD, pp. 175–184 (1991)Google Scholar
  6. 6.
    Hull, R.: Artifact-centric business process models: brief survey of research results and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp. 1152–1163. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88873-4_17CrossRefGoogle Scholar
  7. 7.
    Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of Concurrent Systems. Springer, Heidelberg (2009).  https://doi.org/10.1007/b95112CrossRefzbMATHGoogle Scholar
  8. 8.
    de Leoni, M., Felli, P., Montali, M.: A holistic approach for soundness verification of decision-aware process models. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 219–235. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00847-5_17CrossRefGoogle Scholar
  9. 9.
    Libkin, L.: Fixed point logics and complexity classes. Elements of Finite Model Theory. LNCS, vol. 7360. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-662-07003-1CrossRefzbMATHGoogle Scholar
  10. 10.
    Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle River (1989)zbMATHGoogle Scholar
  11. 11.
    Montali, M., Rivkin, A.: Model checking Petri nets with names using data-centric dynamic systems. Formal Asp. Comput. 28(4), 615–641 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Montali, M., Rivkin, A.: DB-nets: on the marriage of colored petri nets and relational databases. In: Koutny, M., Kleijn, J., Penczek, W. (eds.) Transactions on Petri Nets and Other Models of Concurrency XII. LNCS, vol. 10470, pp. 91–118. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-55862-1_5CrossRefGoogle Scholar
  13. 13.
    Montali, M., Rivkin, A.: From DB-nets to coloured petri nets with priorities (extended version). Technical Report arXiv:1904.00058, arXiv.org (2019)
  14. 14.
    Oberweis, A., Sander, P.: Information system behavior specification by high level petri nets. ACM Trans. Inf. Syst. 14(4), 380–420 (1996)CrossRefGoogle Scholar
  15. 15.
    Reichert, M.: Process and data: two sides of the same coin? In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012. LNCS, vol. 7565, pp. 2–19. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33606-5_2CrossRefGoogle Scholar
  16. 16.
    Ritter, D., Rinderle-Ma, S., Montali, M., Rivkin, A., Sinha, A.: Formalizing application integration patterns. pp. 11–20 (2018)Google Scholar
  17. 17.
    Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability and complexity of petri nets with unordered data. Theor. Comput. Sci. 412(34), 4439–4451 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Triebel, M., Sürmeli, J.: Homogeneous equations of algebraic petri nets. In: Proceedings of CONCUR, LNCS, pp. 1–14. Springer (2016)Google Scholar
  19. 19.
    Weitz, W.: SGML nets: integrating document and workflow modeling. In: Proceedings of HICSS, vol. 2, pp. 185–194 (1998)Google Scholar
  20. 20.
    Westergaard, M., Verbeek, H.M.W.E.: Efficient implementation of prioritized transitions for high-level Petri nets. In: Proceedings of PNSE, pp. 27–41 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Free University of Bozen-BolzanoBolzanoItaly

Personalised recommendations