Advertisement

Radiological Diagnosis and Characterization of HCC

  • Naik Vietti Violi
  • Sara Lewis
  • Stefanie Hectors
  • Daniela Said
  • Bachir TaouliEmail author
Chapter
Part of the Molecular and Translational Medicine book series (MOLEMED)

Abstract

Imaging plays a central role in hepatocellular carcinoma (HCC) screening/surveillance, diagnosis, staging, and treatment response assessment. Clinical imaging methods include abdominal ultrasound (US) used mostly for HCC screening/surveillance and imaging-guided biopsies, computed tomography (CT), and magnetic resonance imaging (MRI) used for confident diagnosis of typical HCC tumors without histologic confirmation, according to practice guidelines. Qualitative HCC imaging appearance is closely linked to its vascular characteristics, with typical imaging features such as hyperenhancement during the arterial phase relative to the surrounding liver parenchyma and washout in portal venous or delayed venous phases post-contrast on CT and MRI. There is recent growing interest in assessing tissue properties using quantitative imaging. Several quantitative imaging methods have been developed with the common goal of improved tumor characterization and prediction of aggressiveness in order to achieve precise and personalized management of HCC. New techniques, such as radiomics, have been proposed as surrogate for histologic examination, avoiding tissue sampling risks and allowing repetitive measurements of the entire tumor volume. Furthermore, with the emergence of molecular targeted therapy, noninvasive imaging techniques allowing early assessment of therapeutic efficacy are necessary.

Keywords

Hepatocellular carcinoma CT MRI LI-RADS Diffusion-weighted imaging Screening Surveillance Radiomics 

Abbreviations

AASLD

American Association for the Study of Liver Diseases

ADC

Apparent diffusion coefficient

AFP

Alpha-fetoprotein

BCLC

Barcelona clinic liver cancer

CE-CT

Contrast-enhanced computed tomography

CEUS

Contrast-enhanced ultrasound

CT

Computed tomography

DCE

Dynamic contracted enhanced

DECT

Dual energy CT

DN

Dysplastic nodule

DWI

Diffusion-weighted imaging

EASL

European Association for the Study of Liver

ECCM

Extracellular contrast media

HBP

Hepatobiliary phase

HCC

Hepatocellular carcinoma

HGDN

High-grade dysplastic nodule

IVIM

Intravoxel incoherent motion

LI-RADS

Liver Imaging Reporting and Data System

MRI

Magnetic resonance imaging

NASH

Nonalcoholic steatohepatitis

OPTN

Organ Procurement and Transplantation Network

PET

Positron emission tomography

TACE

Transarterial chemoembolization

US

Ultrasound

References

  1. 1.
    Bruix J, Sherman M, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Wald C, Russo MW, Heimbach JK, Hussain HK, Pomfret EA, Bruix J. New OPTN/UNOS policy for liver transplant allocation: standardization of liver imaging, diagnosis, classification, and reporting of hepatocellular carcinoma. Radiology. 2013;266(2):376–82.PubMedCrossRefGoogle Scholar
  3. 3.
    Durand F, Regimbeau JM, Belghiti J, Sauvanet A, Vilgrain V, Terris B, et al. Assessment of the benefits and risks of percutaneous biopsy before surgical resection of hepatocellular carcinoma. J Hepatol. 2001;35(2):254–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Shyamala K, Girish HC, Murgod S. Risk of tumor cell seeding through biopsy and aspiration cytology. J Int Soc Prev Community Dent. 2014;4(1):5–11.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kramer H, Pickhardt PJ, Kliewer MA, Hernando D, Chen G-H, Zagzebski JA, et al. Accuracy of liver fat quantification with advanced CT, MRI, and ultrasound techniques: prospective comparison with MR spectroscopy. AJR Am J Roentgenol. 2017;208(1):92–100.PubMedCrossRefGoogle Scholar
  6. 6.
    Grgurevic I, Puljiz Z, Brnic D, Bokun T, Heinzl R, Lukic A, et al. Liver and spleen stiffness and their ratio assessed by real-time two dimensional-shear wave elastography in patients with liver fibrosis and cirrhosis due to chronic viral hepatitis. Eur Radiol. 2015;25(11):3214–21.PubMedCrossRefGoogle Scholar
  7. 7.
    European Association for the Study of the Liver, European Organisation for Research and Treatment of Cancer. EASL–EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56(4):908–43.CrossRefGoogle Scholar
  8. 8.
    International Consensus Group for Hepatocellular Neoplasia. Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology. 2009;49(2):658–64.CrossRefGoogle Scholar
  9. 9.
    Omata M, Lesmana LA, Tateishi R, Chen P-J, Lin S-M, Yoshida H, et al. Asian Pacific Association for the Study of the Liver consensus recommendations on hepatocellular carcinoma. Hepatol Int. 2010;4(2):439–74.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kudo M, Izumi N, Kokudo N, Matsui O, Sakamoto M, Nakashima O, et al. Management of hepatocellular carcinoma in Japan: consensus-based clinical practice guidelines proposed by the Japan Society of Hepatology (JSH) 2010 updated version. Dig Dis. 2011;29(3):339–64.PubMedCrossRefGoogle Scholar
  11. 11.
    Giannini EG, Cucchetti A, Erroi V, Garuti F, Odaldi F, Trevisani F. Surveillance for early diagnosis of hepatocellular carcinoma: how best to do it? World J Gastroenterol. 2013;19(47):8808–21.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    LI-RADS [Internet]. [cited 2018 Aug 21]. Available from: https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/LI-RADS.
  13. 13.
    Santillan CS, Tang A, Cruite I, Shah A, Sirlin CB. Understanding LI-RADS: a primer for practical use. Magn Reson Imaging Clin N Am. 2014;22(3):337–52.PubMedCrossRefGoogle Scholar
  14. 14.
    Darnell A, Forner A, Rimola J, Reig M, García-Criado Á, Ayuso C, et al. Liver imaging reporting and data system with MR imaging: evaluation in nodules 20 mm or smaller detected in cirrhosis at screening US. Radiology. 2015;275(3):698–707.PubMedCrossRefGoogle Scholar
  15. 15.
    CT/MRI LI-RADS v2018 [Internet]. [cited 2018 Aug 10]. Available from: https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/LI-RADS/CT-MRI-LI-RADS-v2018.
  16. 16.
    Bolondi L. Screening for hepatocellular carcinoma in cirrhosis. J Hepatol. 2003;39(6):1076–84.PubMedCrossRefGoogle Scholar
  17. 17.
    Kim SY, An J, Lim Y-S, Han S, Lee J-Y, Byun JH, et al. MRI with liver-specific contrast for surveillance of patients with cirrhosis at high risk of hepatocellular carcinoma. JAMA Oncol. 2017;3(4):456–63.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Dodd GD, Miller WJ, Baron RL, Skolnick ML, Campbell WL. Detection of malignant tumors in end-stage cirrhotic livers: efficacy of sonography as a screening technique. AJR Am J Roentgenol. 1992;159(4):727–33.PubMedCrossRefGoogle Scholar
  19. 19.
    Nowicki TK, Markiet K, Szurowska E. Diagnostic imaging of hepatocellular carcinoma – a pictorial essay. Curr Med Imaging Rev. 2017;13(2):140–53.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Maruyama H, Takahashi M, Ishibashi H, Yoshikawa M, Yokosuka O. Contrast-enhanced ultrasound for characterisation of hepatic lesions appearing non-hypervascular on CT in chronic liver diseases. Br J Radiol. 2012;85(1012):351–7.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Takahashi M, Maruyama H, Shimada T, Kamezaki H, Sekimoto T, Kanai F, et al. Characterization of hepatic lesions (≤30 mm) with liver-specific contrast agents: a comparison between ultrasound and magnetic resonance imaging. Eur J Radiol. 2013;82(1):75–84.PubMedCrossRefGoogle Scholar
  22. 22.
    Sugimoto K, Moriyasu F, Shiraishi J, Saito K, Taira J, Saguchi T, et al. Assessment of arterial hypervascularity of hepatocellular carcinoma: comparison of contrast-enhanced US and gadoxetate disodium-enhanced MR imaging. Eur Radiol. 2012;22(6):1205–13.PubMedCrossRefGoogle Scholar
  23. 23.
    Claudon M, Dietrich CF, Choi BI, Cosgrove DO, Kudo M, Nolsøe CP, et al. Guidelines and good clinical practice recommendations for Contrast Enhanced Ultrasound (CEUS) in the liver – update 2012: a WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS. Ultrasound Med Biol. 2013;39(2):187–210.PubMedCrossRefGoogle Scholar
  24. 24.
    Choi J-Y, Lee J-M, Sirlin CB. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part I. Development, growth, and spread: key pathologic and imaging aspects. Radiology. 2014;272(3):635–54.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Choi J-Y, Lee J-M, Sirlin CB. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part II. Extracellular agents, hepatobiliary agents, and ancillary imaging features. Radiology. 2014;273(1):30–50.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Sangiovanni A, Manini MA, Iavarone M, Romeo R, Forzenigo LV, Fraquelli M, et al. The diagnostic and economic impact of contrast imaging techniques in the diagnosis of small hepatocellular carcinoma in cirrhosis. Gut. 2010;59(5):638–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Rode A, Bancel B, Douek P, Chevallier M, Vilgrain V, Picaud G, et al. Small nodule detection in cirrhotic livers: evaluation with US, spiral CT, and MRI and correlation with pathologic examination of explanted liver. J Comput Assist Tomogr. 2001;25(3):327–36.PubMedCrossRefGoogle Scholar
  28. 28.
    Burrel M, Llovet JM, Ayuso C, Iglesias C, Sala M, Miquel R, et al. MRI angiography is superior to helical CT for detection of HCC prior to liver transplantation: an explant correlation. Hepatology. 2003;38(4):1034–42.PubMedCrossRefGoogle Scholar
  29. 29.
    Khan AS, Hussain HK, Johnson TD, Weadock WJ, Pelletier SJ, Marrero JA. Value of delayed hypointensity and delayed enhancing rim in magnetic resonance imaging diagnosis of small hepatocellular carcinoma in the cirrhotic liver. J Magn Reson Imaging: JMRI. 2010;32(2):360–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Kim BR, Lee JM, Lee DH, Yoon JH, Hur BY, Suh KS, et al. Diagnostic performance of gadoxetic acid–enhanced liver MR imaging versus multidetector CT in the detection of dysplastic nodules and early hepatocellular carcinoma. Radiology. 2017;285(1):134–46.PubMedCrossRefGoogle Scholar
  31. 31.
    Besa C, Kakite S, Cooper N, Facciuto M, Taouli B. Comparison of gadoxetic acid and gadopentetate dimeglumine-enhanced MRI for HCC detection: prospective crossover study at 3 T. Acta Radiol Open. 2015;4(2):2047981614561285.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Davenport MS, Viglianti BL, Al-Hawary MM, Caoili EM, Kaza RK, Liu PSC, et al. Comparison of acute transient dyspnea after intravenous administration of gadoxetate disodium and gadobenate dimeglumine: effect on arterial phase image quality. Radiology. 2013;266(2):452–61.PubMedCrossRefGoogle Scholar
  33. 33.
    Tanimoto A, Higuchi N, Ueno A. Reduction of ringing artifacts in the arterial phase of gadoxetic acid-enhanced dynamic MR imaging. Magn Reson Med Sci: MRMS. 2012;11(2):91–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Cruite I, Schroeder M, Merkle EM, Sirlin CB. Gadoxetate disodium–enhanced MRI of the liver: part 2, protocol optimization and lesion appearance in the cirrhotic liver. Am J Roentgenol. 2010;195(1):29–41.CrossRefGoogle Scholar
  35. 35.
    Cho KJ, Choi NK, Shin MH, Chong AR. Clinical usefulness of FDG-PET in patients with hepatocellular carcinoma undergoing surgical resection. Ann Hepatobiliary Pancreat Surg. 2017;21(4):194–8.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Haug AR. Imaging of primary liver tumors with positron-emission tomography. Q J Nucl Med Mol Imaging. 2017;61(3):292–300.PubMedGoogle Scholar
  37. 37.
    Kong E, Chun KA, Cho IH. Quantitative assessment of simultaneous F-18 FDG PET/MRI in patients with various types of hepatic tumors: correlation between glucose metabolism and apparent diffusion coefficient. PLoS One [Internet]. 2017 [cited 2018 Jul 5];12(7). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5495334/.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hectors S, Wagner M, Besa C, Huang W, Taouli B. Multiparametric FDG-PET/MRI of hepatocellular carcinoma: initial experience. Contrast Media Mol Imaging. 2018;2018:5638283.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Llovet JM, Brú C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis. 1999;19(03):329–38.PubMedCrossRefGoogle Scholar
  40. 40.
    Torbenson M, Schirmacher P. Liver cancer biopsy – back to the future?!. Hepatology. 2015;61(2):431–3.PubMedCrossRefGoogle Scholar
  41. 41.
    Materne R, Smith AM, Peeters F, Dehoux JP, Keyeux A, Horsmans Y, et al. Assessment of hepatic perfusion parameters with dynamic MRI. Magn Reson Med. 2002;47(1):135–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Kim SH, Kamaya A, Willmann JK. CT perfusion of the liver: principles and applications in oncology. Radiology. 2014;272(2):322–44.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Thng CH, Koh TS, Collins D, Koh D-M. Perfusion imaging in liver MRI. Magn Reson Imaging Clin N Am. 2014;22(3):417–32.PubMedCrossRefGoogle Scholar
  44. 44.
    Hagiwara M, Rusinek H, Lee VS, Losada M, Bannan MA, Krinsky GA, et al. Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging--initial experience. Radiology. 2008;246(3):926–34.PubMedCrossRefGoogle Scholar
  45. 45.
    Taouli B, Johnson RS, Hajdu CH, Oei MTH, Merad M, Yee H, et al. Hepatocellular carcinoma: perfusion quantification with dynamic contrast-enhanced MRI. AJR Am J Roentgenol. 2013;201(4):795–800.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Aronhime S, Calcagno C, Jajamovich GH, Dyvorne HA, Robson P, Dieterich D, et al. DCE-MRI of the liver: effect of linear and nonlinear conversions on hepatic perfusion quantification and reproducibility. J Magn Reson Imaging: JMRI. 2014;40(1):90–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Miles KA, Lee T-Y, Goh V, Klotz E, Cuenod C, Bisdas S, et al. Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography. Eur Radiol. 2012;22(7):1430–41.PubMedCrossRefGoogle Scholar
  48. 48.
    Pandharipande PV, Krinsky GA, Rusinek H, Lee VS. Perfusion imaging of the liver: current challenges and future goals. Radiology. 2005;234(3):661–73.PubMedCrossRefGoogle Scholar
  49. 49.
    Tarhan NC, Hatipoğlu T, Ercan E, Bener M, Keleş G, Başaran C, et al. Correlation of dynamic multidetector CT findings with pathological grades of hepatocellular carcinoma. Diagn Interv Radiol. 2011;17(4):328–33.PubMedGoogle Scholar
  50. 50.
    Yang L, Zhang XM, Zhou XP, Tang W, Guan YS, Zhai ZH, et al. Correlation between tumor perfusion and lipiodol deposition in hepatocellular carcinoma after transarterial chemoembolization. J Vasc Interv Radiol: JVIR. 2010;21(12):1841–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Nakamura Y, Kawaoka T, Higaki T, Fukumoto W, Honda Y, Iida M, et al. Hepatocellular carcinoma treated with sorafenib: arterial tumor perfusion in dynamic contrast-enhanced CT as early imaging biomarkers for survival. Eur J Radiol. 2018;98:41–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Tamandl D, Waneck F, Sieghart W, Unterhumer S, Kölblinger C, Baltzer P, et al. Early response evaluation using CT-perfusion one day after transarterial chemoembolization for HCC predicts treatment response and long-term disease control. Eur J Radiol. 2017;90:73–80.PubMedCrossRefGoogle Scholar
  53. 53.
    Johnson TRC, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17(6):1510–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Apfaltrer P, Meyer M, Meier C, Henzler T, Barraza JM, Dinter DJ, et al. Contrast-enhanced dual-energy CT of gastrointestinal stromal tumors: is iodine-related attenuation a potential indicator of tumor response? Investig Radiol. 2012;47(1):65–70.CrossRefGoogle Scholar
  55. 55.
    Gordic S, Puippe GD, Krauss B, Klotz E, Desbiolles L, Lesurtel M, et al. Correlation between dual-energy and perfusion CT in patients with hepatocellular carcinoma. Radiology. 2016;280(1):78–87.PubMedCrossRefGoogle Scholar
  56. 56.
    Kaufmann S, Sauter A, Spira D, Gatidis S, Ketelsen D, Heuschmid M, et al. Tin-filter enhanced dual-energy-CT: image quality and accuracy of CT numbers in virtual noncontrast imaging. Acad Radiol. 2013;20(5):596–603.PubMedCrossRefGoogle Scholar
  57. 57.
    Laroia ST, Bhadoria AS, Venigalla Y, Chibber GK, Bihari C, Rastogi A, et al. Role of dual energy spectral computed tomography in characterization of hepatocellular carcinoma: initial experience from a tertiary liver care institute. Eur J Radiol Open. 2016;3:162–71.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Saito K, Tajima Y, Harada TL. Diffusion-weighted imaging of the liver: current applications. World J Radiol. 2016;8(11):857–67.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Shenoy-Bhangle A, Baliyan V, Kordbacheh H, Guimaraes AR, Kambadakone A. Diffusion weighted magnetic resonance imaging of liver: principles, clinical applications and recent updates. World J Hepatol. 2017;9(26):1081–91.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Barat M, Fohlen A, Cassinotto C, Jannot AS, Dautry R, Pelage J-P, et al. One-month apparent diffusion coefficient correlates with response to radiofrequency ablation of hepatocellular carcinoma. J Magn Reson Imaging: JMRI. 2017;45(6):1648–58.PubMedCrossRefGoogle Scholar
  61. 61.
    Mannelli L, Kim S, Hajdu CH, Babb JS, Taouli B. Serial diffusion-weighted MRI in patients with hepatocellular carcinoma: prediction and assessment of response to transarterial chemoembolization. Preliminary experience. Eur J Radiol. 2013;82(4):577–82.PubMedCrossRefGoogle Scholar
  62. 62.
    Li YT, Cercueil J-P, Yuan J, Chen W, Loffroy R, Wáng YXJ. Liver intravoxel incoherent motion (IVIM) magnetic resonance imaging: a comprehensive review of published data on normal values and applications for fibrosis and tumor evaluation. Quant Imaging Med Surg. 2017;7(1):59–78.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging: JMRI. 2010;31(3):589–600.PubMedCrossRefGoogle Scholar
  64. 64.
    Kakite S, Dyvorne H, Besa C, Cooper N, Facciuto M, Donnerhack C, et al. Hepatocellular carcinoma: short-term reproducibility of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0T. J Magn Reson Imaging: JMRI. 2015;41(1):149–56.PubMedCrossRefGoogle Scholar
  65. 65.
    Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.PubMedCrossRefGoogle Scholar
  66. 66.
    Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62.PubMedCrossRefGoogle Scholar
  67. 67.
    Pinker K, Shitano F, Sala E, Do RK, Young RJ, Wibmer AG, et al. Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging: JMRI. 2018;47(3):604–20.PubMedCrossRefGoogle Scholar
  68. 68.
    Clauson J, Hsieh YC, Acharya S, Rademaker AW, Morrow M. Results of the Lynn Sage Second-Opinion Program for local therapy in patients with breast carcinoma. Changes in management and determinants of where care is delivered. Cancer. 2002;94(4):889–94.PubMedCrossRefGoogle Scholar
  69. 69.
    Robert M, Sofair AN, Thomas A, Bell B, Bialek S, Corless C, et al. A comparison of hepatopathologists’ and community pathologists’ review of liver biopsy specimens from patients with hepatitis C. Clin Gastroenterol Hepatol. 2009;7(3):335–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Zhou W, Zhang L, Wang K, Chen S, Wang G, Liu Z, et al. Malignancy characterization of hepatocellular carcinomas based on texture analysis of contrast-enhanced MR images. J Magn Reson Imaging: JMRI. 2017;45(5):1476–84.PubMedCrossRefGoogle Scholar
  71. 71.
    Peng J, Zhang J, Zhang Q, Xu Y, Zhou J, Liu L. A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma. Diagn Interv Radiol. 2018;24(3):121–7.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007;25(6):675–80.PubMedCrossRefGoogle Scholar
  73. 73.
    Taouli B, Hoshida Y, Kakite S, Chen X, Tan PS, Sun X, et al. Imaging-based surrogate markers of transcriptome subclasses and signatures in hepatocellular carcinoma: preliminary results. Eur Radiol. 2017;27(11):4472–81.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hectors SJ, Wagner M, Bane O, Besa C, Lewis S, Remark R, et al. Quantification of hepatocellular carcinoma heterogeneity with multiparametric magnetic resonance imaging. Sci Rep [Internet]. 2017 [cited 2018 Jun 12];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446396/.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Naik Vietti Violi
    • 1
    • 2
    • 3
  • Sara Lewis
    • 1
    • 2
  • Stefanie Hectors
    • 1
    • 2
  • Daniela Said
    • 1
    • 4
  • Bachir Taouli
    • 1
    • 2
    Email author
  1. 1.Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Department of RadiologyIcahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Department of RadiologyLausanne University hospital and University of LausanneLausanneSwitzerland
  4. 4.Department of RadiologyUniversidad de los AndesSantiagoChile

Personalised recommendations