Algebraic Models for Arbitrary Strength Covering Arrays over v-ary Alphabets

  • Ludwig Kampel
  • Dimitris E. SimosEmail author
  • Bernhard Garn
  • Ilias S. Kotsireas
  • Evgeny Zhereshchin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11545)


Extending our previous work [7], we introduce a novel technique to model and compute arbitrary strength covering arrays over v-ary alphabets, using methods arising from linear algebra commutative algebra and symbolic computation. Concrete instances of covering arrays for given parameters then appear as points in varieties as they occur in solutions of multivariate polynomial equation systems. To solve these systems we apply polynomial solvers based on the theory of Gröbner bases and exhaustive search using serial and parallel programming techniques.


Covering arrays Algebraic models Solvers 



This research was carried out partly in the context of the Austrian COMET K1 program and publicly funded by the Austrian Research Promotion Agency (FFG) and the Vienna Business Agency (WAW). Kotsireas and Zhereshchin are supported by an NSERC grant.


  1. 1.
    Bryce, R.C., Colbourn, C.J.: A density-based greedy algorithm for higher strength covering arrays. Softw. Test. Verif. Reliab. 19(1), 37–53 (2009)CrossRefGoogle Scholar
  2. 2.
    Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: an algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. J. Symb. Comput. 41, 475–511 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bush, K.A., et al.: Orthogonal arrays of index unity. Ann. Math. Stat. 23(3), 426–434 (1952)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Colbourn, C.J.: Combinatorial aspects of covering arrays. Le Mathematiche 59(1, 2), 125–172 (2004)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs. CRC Press, Boca Raton (2006)CrossRefGoogle Scholar
  6. 6.
    Danziger, P., Mendelsohn, E., Moura, L., Stevens, B.: Covering arrays avoiding forbidden edges. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 296–308. Springer, Heidelberg (2008). Scholar
  7. 7.
    Garn, B., Simos, D.E.: Algebraic modelling of covering arrays. In: Kotsireas, I.S., Martínez-Moro, E. (eds.) ACA 2015. PROMS, vol. 198, pp. 149–170. Springer, Cham (2017). Scholar
  8. 8.
    Hnich, B., Prestwich, S.D., Selensky, E., Smith, B.M.: Constraint models for the covering test problem. Constraints 11(2), 199–219 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kampel, L., Simos, D.E.: A survey on the state of the art of complexity problems for covering arrays. Theoret. Comput. Sci. (2018, to appear)Google Scholar
  10. 10.
    Kleitman, D.J., Spencer, J.: Families of k-independent sets. Discrete Math. 6(3), 255–262 (1973)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kreher, D.L., Stinson, D.R.: Combinatorial Algorithms: Generation, Enumeration, and Search, 1st edn. CRC Press, Boca Raton (1998)zbMATHGoogle Scholar
  12. 12.
    Kuhn, D., Kacker, R., Lei, Y.: Introduction to Combinatorial Testing. Chapman & Hall/CRC Innovations in Software Engineering and Software Development Series. Taylor & Francis, London (2013)zbMATHGoogle Scholar
  13. 13.
    Kuhn, R., Kacker, R., Lei, Y., Hunter, J.: Combinatorial software testing. Computer 42(8), 94–96 (2009)CrossRefGoogle Scholar
  14. 14.
    Lei, Y., Tai, K.C.: In-parameter-order: a test generation strategy for pairwise testing. In: Proceedings of the Third IEEE International High-Assurance Systems Engineering Symposium (Cat. No. 98EX231), pp. 254–261 (1998)Google Scholar
  15. 15.
    Nayeri, P., Colbourn, C.J., Konjevod, G.: Randomized post-optimization of covering arrays. Eur. J. Comb. 34(1), 91–103 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Seroussi, G., Bshouty, N.H.: Vector sets for exhaustive testing of logic circuits. IEEE Trans. Inf. Theory 34(3), 513–522 (1988)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Torres-Jimenez, J., Izquierdo-Marquez, I.: Survey of covering arrays. In: 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pp. 20–27 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ludwig Kampel
    • 1
  • Dimitris E. Simos
    • 1
    Email author
  • Bernhard Garn
    • 1
  • Ilias S. Kotsireas
    • 2
  • Evgeny Zhereshchin
    • 2
  1. 1.SBA ResearchViennaAustria
  2. 2.CARGO LabWilfrid Laurier UniversityWaterlooCanada

Personalised recommendations