Advertisement

Extracting Declarative Process Models from Natural Language

  • Han van der AaEmail author
  • Claudio Di Ciccio
  • Henrik Leopold
  • Hajo A. Reijers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11483)

Abstract

Process models are an important means to capture information on organizational operations and often represent the starting point for process analysis and improvement. Since the manual elicitation and creation of process models is a time-intensive endeavor, a variety of techniques have been developed that automatically derive process models from textual process descriptions. However, these techniques, so far, only focus on the extraction of traditional, imperative process models. The extraction of declarative process models, which allow to effectively capture complex process behavior in a compact fashion, has not been addressed. In this paper we close this gap by presenting the first automated approach for the extraction of declarative process models from natural language. To achieve this, we developed tailored Natural Language Processing techniques that identify activities and their inter-relations from textual constraint descriptions. A quantitative evaluation shows that our approach is able to generate constraints that closely resemble those established by humans. Therefore, our approach provides automated support for an otherwise tedious and complex manual endeavor.

Keywords

Declarative modelling Natural language processing Model extraction 

Notes

Acknowledgments

This work has received funding from the EU H2020 programme under MSCA-RISE agreement 645751 (RISE_BPM) and the Alexander von Humboldt Foundation.

References

  1. 1.
    Van der Aa, H., Leopold, H., Reijers, H.A.: Comparing textual descriptions to process models: the automatic detection of inconsistencies. Inf. Syst. 64, 447–460 (2017)CrossRefGoogle Scholar
  2. 2.
    Van der Aa, H., Leopold, H., Reijers, H.A.: Checking process compliance against natural language specifications using behavioral spaces. Inf. Syst. 78, 83–95 (2018)CrossRefGoogle Scholar
  3. 3.
    Van der Aa, H., Leopold, H., van de Weerd, I., Reijers, H.A.: Causes and consequences of fragmented process information: insights from a case study. In: 23rd Americas Conference on Information Systems, AMCIS (2017)Google Scholar
  4. 4.
    Van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: balancing between flexibility and support. Comput. Sci. R&D 23(2), 99–113 (2009)Google Scholar
  5. 5.
    Androutsopoulos, I.: Exploring Time, Tense and Aspect in Natural Language Database Interfaces, vol. 6. John Benjamins Publishing, Amsterdam (2002)CrossRefGoogle Scholar
  6. 6.
    Baier, T., Mendling, J.: Bridging abstraction layers in process mining by automated matching of events and activities. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 17–32. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40176-3_4CrossRefGoogle Scholar
  7. 7.
    De Marneffe, M.C., Manning, C.D.: The Stanford typed dependencies representation. In: Workshop on Cross-Framework and Cross-Domain Parser Evaluation, pp. 1–8 (2008)Google Scholar
  8. 8.
    Di Ciccio, C., Maggi, F.M., Mendling, J.: Efficient discovery of target-branched declare constraints. Inf. Syst. 56, 258–283 (2016)CrossRefGoogle Scholar
  9. 9.
    Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies and redundancies in declarative process models. Inf. Syst. 64, 425–446 (2017)CrossRefGoogle Scholar
  10. 10.
    Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: characteristics, requirements and analysis of contemporary approaches. J. Data Semant. 4(1), 29–57 (2015)CrossRefGoogle Scholar
  11. 11.
    Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes. ACM Trans. Manag. Inf. Syst. 5(4), 24:1–24:37 (2015)CrossRefGoogle Scholar
  12. 12.
    Dragoni, M., Villata, S., Rizzi, W., Governatori, G.: Combining natural language processing approaches for rule extraction from legal documents. In: Pagallo, U., Palmirani, M., Casanovas, P., Sartor, G., Villata, S. (eds.) AICOL 2015-2017. LNCS (LNAI), vol. 10791, pp. 287–300. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00178-0_19CrossRefGoogle Scholar
  13. 13.
    Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of BusinessProcess Management, 2nd edn. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-662-56509-4CrossRefGoogle Scholar
  14. 14.
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: ICSE, pp. 411–420. ACM (1999)Google Scholar
  15. 15.
    Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21640-4_36CrossRefGoogle Scholar
  16. 16.
    Gonçalves, J.C.d.A., Santoro, F.M., Baiao, F.A.: Business process mining from group stories. In: CSCWD, pp. 161–166. IEEE (2009)Google Scholar
  17. 17.
    Herbst, J., Karagiannis, D.: An inductive approach to the acquisition and adaptation of workflow models. In: IJCAI, vol. 99, pp. 52–57. Citeseer (1999)Google Scholar
  18. 18.
    Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Designing a cross-organizational case management system using dynamic condition response graphs. In: EDOC, pp. 161–170 (2011)Google Scholar
  19. 19.
    Ilieva, M.G., Ormandjieva, O.: Automatic transition of natural language software requirements specification into formal presentation. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 392–397. Springer, Heidelberg (2005).  https://doi.org/10.1007/11428817_45CrossRefGoogle Scholar
  20. 20.
    Jurafsky, D., Martin, J.H.: Speech & Language Processing. Pearson Education India, Bengaluru (2000)Google Scholar
  21. 21.
    Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: ACL, pp. 423–430 (2003)Google Scholar
  22. 22.
    Leopold, H., van der Aa, H., Pittke, F., Raffel, M., Mendling, J., Reijers, H.A.: Searching textual and model-based process descriptions based on a unified data format. SoSym 18(2), 1179–1194 (2019)CrossRefGoogle Scholar
  23. 23.
    Leopold, H., van der Aa, H., Reijers, H.A.: Identifying candidate tasks for robotic process automation in textual process descriptions. In: Gulden, J., Reinhartz-Berger, I., Schmidt, R., Guerreiro, S., Guédria, W., Bera, P. (eds.) BPMDS/EMMSAD -2018. LNBIP, vol. 318, pp. 67–81. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91704-7_5CrossRefGoogle Scholar
  24. 24.
    Maggi, F.M., Di Ciccio, C., Di Francescomarino, C., Kala, T.: Parallel algorithms for the automated discovery of declarative process models. Inf. Syst. 74, 136–152 (2017)CrossRefGoogle Scholar
  25. 25.
    Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  26. 26.
    Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006).  https://doi.org/10.1007/11837862_18CrossRefGoogle Scholar
  27. 27.
    Riefer, M., Ternis, S.F., Thaler, T.: Mining process models from natural language text: a state-of-the-art analysis. In: MKWI. Universität Illmenau (2016)Google Scholar
  28. 28.
    Saint-Dizier, P.: Mining incoherent requirements in technical specifications. In: Frasincar, F., Ittoo, A., Nguyen, L.M., Métais, E. (eds.) NLDB 2017. LNCS, vol. 10260, pp. 71–83. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59569-6_8CrossRefGoogle Scholar
  29. 29.
    Sànchez-Ferreres, J., van der Aa, H., Carmona, J., Padró, L.: Aligning textual and model-based process descriptions. Data Knowl. Eng. 118, 25–40 (2018)CrossRefGoogle Scholar
  30. 30.
    Selway, M., Grossmann, G., Mayer, W., Stumptner, M.: Formalising natural language specifications using a cognitive linguistic/configuration based approach. Inf. Syst. 54, 191–208 (2015)CrossRefGoogle Scholar
  31. 31.
    Sinha, A., Paradkar, A.: Use cases to process specifications in business process modeling notation. In: IEEE International Conference on Web Services, pp. 473–480. IEEE (2010)Google Scholar
  32. 32.
    Slaats, T., Mukkamala, R.R., Hildebrandt, T., Marquard, M.: Exformatics declarative case management workflows as DCR graphs. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 339–354. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40176-3_28CrossRefGoogle Scholar
  33. 33.
    Weidlich, M., Sheetrit, E., Branco, M.C., Gal, A.: Matching business process models using positional passage-based language models. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 130–137. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41924-9_12CrossRefGoogle Scholar
  34. 34.
    Winter, K., Rinderle-Ma, S.: Detecting constraints and their relations from regulatory documents using nlp techniques. In: Panetto, H., Debruyne, C., Proper, H., Ardagna, C., Roman, D., Meersman, R. (eds.) OTM 2018. LNCS, vol. 11229, pp. 261–278. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-02610-3_15CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Han van der Aa
    • 1
    Email author
  • Claudio Di Ciccio
    • 2
  • Henrik Leopold
    • 3
    • 4
  • Hajo A. Reijers
    • 5
  1. 1.Department of Computer ScienceHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Institute for Information BusinessVienna University of Economics and BusinessViennaAustria
  3. 3.Kühne Logistics UniversityHamburgGermany
  4. 4.Hasso Plattner InstituteUniversity of PotsdamPotsdamGermany
  5. 5.Department of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations