Environmental Arsenic Exposure and Human Health Risk

  • Anindita Mitra
  • Soumya Chatterjee
  • Dharmendra K. Gupta
Part of the Advances in Water Security book series (AWS)


Millions of people worldwide are exposed to arsenic through contaminated water used for drinking, cooking, and irrigation of crops. Presence of significantly elevated levels of arsenic (exceeding the World Health Organization (WHO) recommended a provisional value of 10 μg/L) in food or drinking water has been documented from many parts of the world. Chronic exposure to the element is a major global public health issue. Clinical symptoms of acute arsenic poisoning include muscular weakness and muscle cramps, nausea, vomiting, and diarrhea. Arsenic-associated chronic poisoning leads to diseases like cancers, skin lesions, diabetes, hypertension, etc. Arsenic is a potent genotoxic agent for animals and humans that can damage DNA, induces chromosomal aberrations, sister chromatid exchange and micronuclei formations. Extensive research on the biological mechanisms underlying arsenic-associated disease suggests that among a number of cellular mechanisms, epigenetic modifications (altered DNA methylation, miRNA expression, and histone modification) are underpinned by arsenic exposure. Evidence support that inorganic arsenic is an epigenetic modulator of genes as it can alter enzymatic activity of DNA methyltransferases, histone deacetylase (HDAC) and histone acetyltransferase (HAT) that are associated with cellular growth and immune response. This review aims to present a comprehensive overview of the possible sources of arsenic exposure to humans, and effects on metabolic pathways and related health issues. Additionally, epigenetic modification underlying arsenic-associated changes and their role in arsenic-induced toxicity are also discussed.


Arsenic sources Metabolism Acute and chronic toxicity Epigenetic modification 



A.M. is thankful to Principal, BCC, W.B; and S.C. is thankful to Director, DRL (DRDO), Assam, India. The authors apologize for the many colleagues who are not referenced in this work due to space limitations.


  1. Abdul KS, Jayasinghe SS, Chandana EP, Jayasumana C, De Silva PM (2015) Arsenic and human health effects: a review. Environ Toxicol Pharmacol 40(3):828–846CrossRefGoogle Scholar
  2. Ahmed S, Mahabbat-e Khoda S, Rekha RS, Gardner RM, Ameer SS, Moore S, Ekström EC, Vahter M, Raqib R (2011) Arsenic-associated oxidative stress, inflammation, and immune disruption in human placenta and cord blood. Environ Health Perspect 119:258–264CrossRefGoogle Scholar
  3. Akter KF, Owens G, Davey DE, Naidu R (2005) Arsenic speciation and toxicity in biological systems. In: Ware GW et al (eds) Reviews of environmental contamination and toxicology, vol 184. Springer, New YorkCrossRefGoogle Scholar
  4. Alahmari A, Adham K, Alhimaidi A (2017) Immunotoxic and genotoxic effects of arsenic and ameliorative potential of quercetin and probiotics in Wistar Rat. Am J Life Sci 5(4):108–115CrossRefGoogle Scholar
  5. Alava P, Du Laing G, Tack F, De Ryck T, Van De Wiele T (2014) Westernized diets lower arsenic gastrointestinal bioaccessibility but increase microbial arsenic speciation changes in the colon. Chemosphere 119C:757–762Google Scholar
  6. Al-Eryani L, Waigel S, Tyagi A, Peremarti J, Jenkins SF, Damodaran C, States JC (2018) Differentially expressed mRNA targets of differentially expressed miRNAs predict changes in the TP53 axis and carcinogenesis-related pathways in human keratinocytes chronically exposed to arsenic. Toxicol Sci 162(2):645–654CrossRefGoogle Scholar
  7. Argos M, Pierce BL, Chen Y, Parvez F, Islam T, Ahmed A, Hasan R, Hasan K, Sarwar G, Levy D, Slavkovich V, Graziano JH, Rathouz PJ, Ahsan H (2011) A prospective study of arsenic exposure from drinking water and incidence of skin lesions in Bangladesh. Am J Epidemiol 174:185–194CrossRefGoogle Scholar
  8. Argos M, Parvez F, Rahman M, Rakibuz-Zaman M, Ahmed A, Hore SK, Islam T, Chen Y, Pierce BL, Slavkovich V, Olopade C, Yunus M, Baron JA, Graziano JH, Ahsan H (2014) Arsenic and lung disease mortality in Bangladeshi adults. Epidemiology 25(4):536–543CrossRefGoogle Scholar
  9. ATSDR (2007) Toxicological profile for arsenic, Agency for Toxic Substances and Disease Registry (ATSDR). In: U.S. DHHS (ed), AtlantaGoogle Scholar
  10. Baccarelli A, Bollati V (2009) Epigenetics and environmental chemicals. Curr Opin Pediatr 21(2):243–251CrossRefGoogle Scholar
  11. Bailey K, Fry R (2014) Arsenic associated changes to the epigenome: what are the functional consequences? Curr Environ Health Rep 1:22–34CrossRefGoogle Scholar
  12. Bailey KA, Hester SD, Knapp GW, Owen RD, Thai SF (2010) Gene expression of normal human epidermal keratinocytes modulated by trivalent arsenicals. Mol Carcinog 49(12):981–998CrossRefGoogle Scholar
  13. Bal S, Yadav A, Verma N, Aggarwal NK, Gupta R (2018a) Protective role of eugenol on arsenic induced oxidative DNA damage and modulatory effect of GSTO2 polymorphism. J Food Biochem 42(5):e12565CrossRefGoogle Scholar
  14. Bal S, Yadav A, Verma N, Gupta R, Aggarwal NK (2018b) Shielding effect of anethole against arsenic induced genotoxicity in cultured human peripheral blood lymphocytes and effect of GSTO1 polymorphism. Biotech 8(5):232Google Scholar
  15. Banerjee M, Giri AK (2016) Genetic epidemiology of susceptibility to arsenic – induced diseases. In: Christopher J (ed) Arsenic: exposure sources, health risks, and mechanisms of toxicity. John Wiley & Sons, Hoboken, pp 267–288Google Scholar
  16. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395CrossRefGoogle Scholar
  17. Battal D, Çelik A, Guler G, Aktaş A, Yildirimcan S, Ocakoglu K, Çomelekoglu U (2015) SiO2 Nanoparticule-induced size-dependent genotoxicity - an in vitro study using sister chromatid exchange, micronucleus and comet assay. Drug Chem Toxicol 38(2):196–204CrossRefGoogle Scholar
  18. Bjorklund KL, Vahter M, Palm B, Grandér M, Lignell S, Berglund M (2012) Metals and trace element concentrations in breast milk of first time healthy mothers: a biological monitoring study. Environ Health 11:92CrossRefGoogle Scholar
  19. Bleich S, Lenz B, Ziegenbein M, Beutler S, Frieling H, Kornhuber J, Bonsch D (2006) Epigenetic DNA hypermethylation of the HERP gene promoter induces down-regulation of its mRNA expression in patients with alcohol dependence. Alcohol Clin Exp Res 30:587–591CrossRefGoogle Scholar
  20. Bogdan GM, Sampayo-Reyes A, Aposhian HV (1994) Arsenic binding proteins of mammalian systems: I. Isolation of three arsenite-binding proteins of rabbit liver. Toxicology 93:175–193CrossRefGoogle Scholar
  21. Cantor KP, Ward MH, Moore L, Lubin J (2006) Water contaminants. In: Schottenfeld D, Fraumeni JF Jr (eds) Cancer epidemiology and prevention. Oxford University Press, NewYork, pp 382–384CrossRefGoogle Scholar
  22. Cao Y, Yu SL, Wang Y, Guo GY, Ding Q, An RH (2011) MicroRNA dependent regulation of PTEN after arsenic trioxide treatment in bladder cancer cell line T24. Tumour Biol 32:179–188CrossRefGoogle Scholar
  23. Carey AM, Lombi E, Donner E, de Jonge MD, Punshon T, Jackson BP, Guerinot ML, Price AH, Meharg AA (2012) A review of recent developments in the speciation and location of arsenic and selenium in rice grain. Anal Bioanal Chem 402(10):3275–3286CrossRefGoogle Scholar
  24. Carignan CC, Cottingham KL, Jackson BP, Farzan SF, Gandolfi AJ, Punshon T et al (2015) Estimated exposure to arsenic in breastfed and formula-fed infants in a United States Cohort. Environ Health Perspect 123:500–506CrossRefGoogle Scholar
  25. Carpenter RL, Jiang BH (2013) Roles of EGFR, PI3K, AKT, and mTOR in heavy metal-induced cancer. Curr Cancer Drug Targets 13(3):252–266CrossRefGoogle Scholar
  26. Cerda S, Weitzman SA (1997) Influence of oxygen radical injury on DNA methylation. Mutat Res 386:141–152CrossRefGoogle Scholar
  27. Chakrabarti D, Singh SK, Rashid MH, Rahman MM (2018a) Arsenic: occurrence in groundwater. Reference Module in Earth Systems and Environmental Sciences.
  28. Chakrabarti D, Singh SK, Rahman MM, Dutta RN, Mukherjee SC, Pati S, Kar PB (2018b) Groundwater arsenic contamination in the Ganga River Basin: a future health danger. Int J Environ Res Public Health 15(2):180CrossRefGoogle Scholar
  29. Chakraborti D, Biswas BK, Basu GK, Chowdhury UK, Chowdhury RT, Lodh D et al (1999) Possible arsenic contamination free groundwater source in Bangladesh. J Surf Sci Technol 15:180–188Google Scholar
  30. Chakraborti D, Mukherjee SC, Pati S, Sengupta MK, Rahman MM, Chowdhury UK, Lodh D, Chanda CR, Chakraborti AK, Basu GK (2003) Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger? Environ Health Perspect 111(9):1194CrossRefGoogle Scholar
  31. Challenger F (1945) Biological methylation. Chem Rev 36:315–361CrossRefGoogle Scholar
  32. Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, Lahiri S, Das S, Ghosh N, Chatterjee D (2006) DNA hypermethylation of promoter of gene p53 and p16 in arsenic exposed people with and without malignancy. Toxicol Sci 89:431–437CrossRefGoogle Scholar
  33. Chatterjee A, Mukherjee A (1999) Hydrogeological investigation of ground water arsenic contamination in South Calcutta. Sci Total Environ 225:249–262CrossRefGoogle Scholar
  34. Chatterjee S, Datta S, Gupta DK (2017a) Studies on arsenic and human health. In: Gupta DK, Chatterjee S (eds) Arsenic contamination in the environment: the issues and solutions. Springer International Publishing AG, ChamGoogle Scholar
  35. Chatterjee S, Sharma S, Gupta DK (2017b) Arsenic and its effect on major crop plants: Stationary awareness to paradigm with special reference to rice crop. In: Gupta DK, Chatterjee S (eds) Arsenic contamination in the environment. Springer International Publishing AG, Cham, pp 123–143CrossRefGoogle Scholar
  36. Chen QY, Costa M (2018) PI3K/Akt/mTOR signaling pathway and the biphasic effect of arsenic in carcinogenesis. Mol Pharmacol 94(1):784–792CrossRefGoogle Scholar
  37. Chen H, Liu J, Zhao CQ, Diwan BA, Merrick BA, Waalkes MP (2001) Association of c-myc overexpression and hyperproliferation with arsenite-induced malignant transformation. Toxicol Appl Pharmacol 175(3):260–268CrossRefGoogle Scholar
  38. Chen WT, Hung WC, Kang WY, Huang YC, Chai CY (2007) Urothelial carcinomas arising in arsenic contaminated areas are associated with hypermethylation of the gene promoter of the death associated protein kinase. Histopathology 51:785–792CrossRefGoogle Scholar
  39. Chen CL, Chiou HY, Hsu LI, Hsueh YM, Wu MM, Wang YH, Chen CJ (2010) Arsenic in drinking water and risk of urinary tract cancer: a follow-up study from northeastern Taiwan. Cancer Epidemiol Biomark Prev 19:101–110CrossRefGoogle Scholar
  40. Chen C, Jiang X, Gu S, Zhang Z (2017) MicroRNA-155 regulates arsenite-induced malignant transformation by targeting Nrf2-mediated oxidative damage in human bronchial epithelial cells. Toxicol Lett 278:38–47CrossRefGoogle Scholar
  41. Chung JY, Yu SD, Hong YS (2014) Environmental source of arsenic exposure. J Prev Med Public Health 47(5):253CrossRefGoogle Scholar
  42. Ciarrocca M, Tomei F, Caciari T, Cetica C, Andrè JC, Fiaschetti M, Schifano MP, Scala B, Scimitto L, Tomei G, Sancini A (2012) Exposure to arsenic in urban and rural areas and effects on thyroid hormones. Inhal Toxicol 24(9):589–598CrossRefGoogle Scholar
  43. Colognato R, Coppede F, Ponti J, Sabbioni E, Migliore L (2007) Genotoxicity induced by arsenic compounds in peripheral human lymphocytes analysed by cytokinesis-block micronucleus assay. Mutagenesis 22(4):255–261CrossRefGoogle Scholar
  44. Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM, Siegmund KD, Haile RW, Laird PW (2012) Environmental epigenetics: prospects for studying epigenetic mediation of exposure response relationships. Hum Genet 131:1565–1589CrossRefGoogle Scholar
  45. Cubadda F, Jackson BP, Cottingham KL, Van Horne YO, Kurzius-Spencer M (2016) Human exposure to dietary inorganic arsenic and other arsenic species: state of knowledge, gaps and uncertainties. Sci Total Environ 579:1228–1239CrossRefGoogle Scholar
  46. Cui X, Wakai T, Shirai Y, Yokoyama N, Hatakeyama K, Hirano S (2006) Arsenic trioxide inhibits DNA methyltransferase and restores methylation-silenced genes in human liver cancer cells. Hum Pathol 37(3):298–311CrossRefGoogle Scholar
  47. Cui Y, Han Z, Hu Y, Song G, Hao C, Xia H, Ma X (2012) MicroRNA181b and microRNA9 mediate arsenic induced angiogenesis via NRP1. J Cell Physiol 227:772–783CrossRefGoogle Scholar
  48. Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764CrossRefGoogle Scholar
  49. Dauphiné DC, Ferreccio C, Guntur S, Yuan Y, Hammond SK, Balmes J, Smith AH, Steinmaus C (2011) Lung function in adults following in utero and childhood exposure to arsenic in drinking water: preliminary findings. Int Arch Occup Environ Health 84(6):591–600CrossRefGoogle Scholar
  50. Dávila-Esqueda ME, Jiménez-Capdeville ME, Delgado JM, De la Cruz E, Aradillas-García C, Jiménez-Suárez V, Escobedo RF, Llerenas JR (2012) Effects of arsenic exposure during the pre-and postnatal development on the puberty of female offspring. Exp Toxicol Pathol 64(1-2):25–30CrossRefGoogle Scholar
  51. Del Razo L, García-Vargas G, Valenzuela OL, Castellanos EH, Sánchez-Peña LC, Currier JM, Drobná Z, Loomis D, Stýblo M (2011) Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross-sectional study in the Zimapan and Lagunera regions in Mexico. Environ Health 10:73–84CrossRefGoogle Scholar
  52. Derheimer FA, Kastan MB (2010) Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Lett 584(17):3675–3681CrossRefGoogle Scholar
  53. Diaz OP, Leyton I, Munoz O, Nunez N, Devesa V, Suner MA, Velez D, Montoro R (2004) Contribution of water, bread and vegetables (raw and cooked) to dietary intake of inorganic arsenic in a rural village of Northern Chile. J Agric Food Chem 52:1773–1779CrossRefGoogle Scholar
  54. Diaz OP, Arcos R, Tapia Y, Pastene R, Velez D, Devesa V, Montoro R, Aguilera V, Becerra M (2015) Estimation of arsenic intake from drinking water and food (raw and cooked) in a rural village of northern Chile. Urine as a biomarker of recent exposure. Int J Environ Res Public Health 12(5):5614–5633CrossRefGoogle Scholar
  55. Dolinoy DC, Weidman JR, Jirtle RL (2007) Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol 23:297–307CrossRefGoogle Scholar
  56. Drobna Z, Styblo M, Thomas DJ (2009) An overview of arsenic metabolism and toxicity. Curr Protoc Toxicol 42(1):4–3Google Scholar
  57. EFSA (2014) Dietary exposure to inorganic arsenic in the European population. EFSA J 12:68Google Scholar
  58. Eichstaedt CA, Antao T, Cardona A, Pagani L, Kivisild T, Mormina M (2015) Positive selection of AS3MT to arsenic water in Andean populations. Mutat Res 780:97–102CrossRefGoogle Scholar
  59. European Commission (2000) Ambient air pollution by AS, CD and NI compounds (Position Paper—Final), p 318
  60. European Food Safety Authority (EFSA) (2009) EFSA Panel on contaminants in the food chain (CONTAM): scientific opinion on arsenic in food. EFSA J 7:1351CrossRefGoogle Scholar
  61. FAO/WHO (2011) Report of the joint FAO/WHO expert consultation on the risks and benefits of fish consumption. WHO/Food and Agriculture Organization of the United Nations, Geneva/Rome, p 50Google Scholar
  62. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4:143–153CrossRefGoogle Scholar
  63. Fu HY, Shen JZ, Wu Y, Shen SF, Zhou HR, Fan LP (2010) Arsenic trioxide inhibits DNA methyltransferase and restores expression of methylation-silenced CDKN2B/CDKN2A genes in human hematologic malignant cells. Oncol Rep 24:335–343CrossRefGoogle Scholar
  64. Ganapathy S, Xiao S, Yang M, Qi M, Choi DE, Ha CS, Little JB, Yuan ZM (2014) A low-dose arsenic induced p53-mediated metabolic mechanism of radiotherapy protection. J Biol Chem 289:5340–5347CrossRefGoogle Scholar
  65. Ganapathy S, Xiao S, Seo SJ, Lall R, Yang M, Xu T, Su H, Shadfan M, Ha CS, Yuan ZM (2015) Low-dose arsenic induces chemotherapy protection via p53/NF-κB-mediated metabolic regulation. Oncogene 33(11):1359CrossRefGoogle Scholar
  66. Ganapathy S, Li P, Fagman J, Yu T, Lafontant J, Zhang G, Chen C (2016) Low doses of arsenic, via perturbing p53, promotes tumorigenesis. Toxicol Appl Pharmacol 306:98–104CrossRefGoogle Scholar
  67. Gibb H, Haver C, Gaylor D, Ramasamy S, Lee JS, Lobdell D, Wade T, Chen C, White P, Sams R (2011) Utility of recent studies to assess the National Research Council 2001 estimates of cancer risk from ingested arsenic. Environ Health Perspect 119:284–290CrossRefGoogle Scholar
  68. Glozak MA, Seto E (2007) Histone deacetylases and cancer. Oncogene 26:5420–5432CrossRefGoogle Scholar
  69. Goggin SL, Labrecque MT, Allan AM (2012) Perinatal exposure to 50 ppb sodium arsenate induces hypothalamic-pituitary-adrenal axis dysregulation in male C57BL/6 mice. Neurotoxicology 33(5):1338–1345CrossRefGoogle Scholar
  70. Golub MS, Macintosh MS, Baumrind N (1998) Developmental and reproductive toxicity of inorganic arsenic: animal studies and human concerns. J Toxicol Environ Health B Crit Rev 1(3):199–237CrossRefGoogle Scholar
  71. Gong G, O’Bryant SE (2012) Low-level arsenic exposure, AS3MT gene polymorphism and cardiovascular diseases in rural Texas counties. Environ Res 113:52–57CrossRefGoogle Scholar
  72. Gong Z, Lu X, Cullen WR, Le XC (2001) Unstable trivalent arsenic metabolites, monomethylarsonous acid and dimethylarsinous acid. J Anal At Spectrom 16:1409–1413CrossRefGoogle Scholar
  73. Gong G, Hargrave KA, Hobson V, Spallholz J, Boylan M, Lefforge D, O'Bryant SE (2011) Low-level groundwater arsenic exposure impacts cognition: a project FRONTIER study. J Environ Health 74:16–22Google Scholar
  74. Gosse JA, Taylor VF, Jackson BP, Hamilton JW, Bodwell JE (2014) Monomethylated trivalent arsenic species disrupt steroid receptor interactions with their DNA response elements at non-cytotoxic cellular concentrations. J Appl Toxicol 34(5):498–505CrossRefGoogle Scholar
  75. Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54(18):4855–4878Google Scholar
  76. Gregus Z, Gyurasics A, Csanaky I (2000) Biliary and urinary excretion of inorganic arsenic: monomethylarsonous acid as a major biliary metabolite in rats. Toxicol Sci 56(1):18–25CrossRefGoogle Scholar
  77. Guha Mazumder DN, Das Gupta J, Santra A, Pal A, Ghose A, Sarkar S (1998) Chronic arsenic toxicity in West Bengal—The worst calamity in the world. J Indian Med Assoc 96:4–7Google Scholar
  78. Gupta DK, Chatterjee S (2017) Arsenic contamination in the environment: the issues and Solutions. Springer International Publishing AG, ChamCrossRefGoogle Scholar
  79. Gupta DK, Tiwari S, Razafindrabe BHN, Chatterjee S (2017) Arsenic contamination from historical aspects to present. In: Gupta DK, Chatterjee S (eds) Arsenic contamination in the environment: the issues and solutions. Springer International Publishing AG, ChamCrossRefGoogle Scholar
  80. Hamadani JD, Tofail F, Nermell B, Gardner R, Shiraji S, Bottai M, Arifeen SE, Huda SN, Vahter M (2011) Critical windows of exposure for arsenic-associated impairment of cognitive function in pre-school girls and boys: a population-based cohort study. Int J Epidemiol 40:1593–1604CrossRefGoogle Scholar
  81. Hayakawa T, Kobayashi Y, Cui X, Hirano S (2005) A new metabolic pathway of arsenite: arsenic–glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol 79(4):183–191CrossRefGoogle Scholar
  82. Henke KR (2009) Arsenic in natural environments. In: Henke K (ed) Arsenic: environmental chemistry, health threats and waste treatment. John Wiley & Sons Ltd, Chichester, pp 69–235CrossRefGoogle Scholar
  83. Huang BW, Ray PD, Iwasaki K, Tsuji Y (2013) Transcriptional regulation of the human ferritin gene by coordinated regulation of Nrf2 and protein arginine methyltransferases PRMT1 and PRMT4. FASEB J 27:3763–3774CrossRefGoogle Scholar
  84. Hubaux R, Becker Santos DD, Enfield KSS, Rowbotham D, Lam S, Lam WL, Martinez VD (2013) Molecular features in arsenic induced lung tumors. Mol Cancer 12:20CrossRefGoogle Scholar
  85. Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123:305–332CrossRefGoogle Scholar
  86. Hunt KM, Srivastava RK, Elmets CA, Athar M (2014) The mechanistic basis of arsenicosis: pathogenesis of skin cancer. Cancer Lett 354(2):211–219CrossRefGoogle Scholar
  87. Intarasunanont P, Navasumrit P, Woraprasit S, Chaisatra K, Suk WA, Mahidol C, Ruchirawat M (2012) Effects of arsenic exposure on DNA methylation in cord blood samples from newborn babies and in a human lymphoblast cell line. Environ Health 11:31CrossRefGoogle Scholar
  88. Islam R, Khan I, Hassan SN, McEvoy M, D'Este C, Attia J, Peel R, Sultana M, Akter S, Milton AH (2012) Association between type 2 diabetes and chronic arsenic exposure in drinking water: a cross sectional study in Bangladesh. Environ Health 11:38CrossRefGoogle Scholar
  89. Islam MR, Attia J, Alauddin M, McEvoy M, McElduff P, Slater C et al (2014) Availability of arsenic in human milk in women and its correlation with arsenic in urine of breastfed children living in arsenic contaminated areas in Bangladesh. Environ Health 13:101CrossRefGoogle Scholar
  90. Iyer S, Sengupta C, Velumani A (2016) Blood arsenic: Pan-India prevalence. Clin Chim Acta 455:99–101CrossRefGoogle Scholar
  91. Jansen RJ, Argos M, Tong L, Li J, Rakibuz-Zaman M, Islam MT, Slavkovich V, Ahmed A, Navas-Acien A, Parvez F, Chen Y (2016) Determinants and consequences of arsenic metabolism efficiency among 4,794 individuals: demographics, lifestyle, genetics, and toxicity. Cancer Epidemiol Biomarkers Prev 25(2):381–390CrossRefGoogle Scholar
  92. Jensen TJ, Novak P, Eblin KE, Gandolfi AJ, Futscher BW (2008) Epigenetic remodelling during arsenical induced malignant transformation. Carcinogenesis 29:1500–1508CrossRefGoogle Scholar
  93. Jo WJ, Ren X, Chu F, Aleshin M, Wintz H, Burlingame A, Smith MT, Vulpe CD, Zhang L (2009) Acetylated H4K16 by MYST1 protects UROtsa cells from arsenic toxicity and is decreased following chronic arsenic exposure. Toxicol Appl Pharmacol 241(3):294–302CrossRefGoogle Scholar
  94. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107Google Scholar
  95. Jovanovic D, Rasic-Milutinovic Z, Paunovic K, Jakovljevic B, Plavsic S, Milosevic J (2013) Low levels of arsenic in drinking water and type 2 diabetes in Middle Banat region, Serbia. Int J Hyg Environ Health 216:50–55CrossRefGoogle Scholar
  96. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311Google Scholar
  97. Khairul I, Wang QQ, Jiang YH, Wang C, Naranmandura H (2017) Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 8(14):23905CrossRefGoogle Scholar
  98. Kile ML, Baccarelli A, Hoffman E, Tarantini L, Quamruzzaman Q, Rahman M, Mahiuddin G, Mostofa G, Hsueh YM, Wright RO, Christiani DC (2012) Prenatal arsenic exposure and DNA methylation in maternal and umbilical cord blood leukocytes. Environ Health Perspect 120:1061–1066CrossRefGoogle Scholar
  99. Kim YJ, Kim JM (2015) Arsenic toxicity in male reproduction and development. Dev Rep 19:167–180CrossRefGoogle Scholar
  100. Kouzarides T (2007) Snap Shot: histone-modifying enzymes. Cell 128:802CrossRefGoogle Scholar
  101. Kuo CC, Moon KA, Wang SL, Silbergeld E, Navas-Acien A (2017) The association of arsenic metabolism with cancer, cardiovascular disease, and diabetes: a systematic review of the epidemiological evidence. Environ Health Perspect 125(8):087001CrossRefGoogle Scholar
  102. Lee E (1999) A physiologically based pharmacokinetic model for the ingestion of arsenic in humans. University of California, Irvine, CA, Ph.D. thesisGoogle Scholar
  103. Leffers L, Unterberg M, Bartel M, Hoppe C, Pieper I, Stertmann J, Ebert F, Humpf HU, Schwerdtle T (2013) In vitro toxicological characterisation of the S-containing arsenic metabolites thio-dimethylarsinic acid and dimethylarsinic glutathione. Toxicology 305:109–119CrossRefGoogle Scholar
  104. Li J, Chen P, Sinogeeva N, Gorospe M, Wersto RP, Chrest FJ, Barnes J, Liu Y (2002) Arsenic trioxide promotes histone H3 phosphoacetylation at the chromatin of CASPASE10 in acute pro myelocytic leukemia cells. J Biol Chem 277:49504–49510CrossRefGoogle Scholar
  105. Li J, Gorospe M, Barnes J, Liu Y (2003) Tumor promoter arsenite stimulates histone H3 phosphoacetylation of proto-oncogenes c-fos and c-jun chromatin in human diploid fibroblasts. J Biol Chem 278:13183–13191CrossRefGoogle Scholar
  106. Li W, Cui X, Meng Z, Huang X, Xie Q, Wu H, Jin H, Zhang D, Liang W (2012) Transcriptional regulation of Arabidopsis MIR168a and ARGONAUTE1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiol 158:1279–1292CrossRefGoogle Scholar
  107. Liu J, Kadiiska MB, Liu Y, Lu T, Qu W, Waalkes MP (2001a) Stress-related gene expression in mice treated with inorganic arsenicals. Toxicol Sci 61(2):314–320CrossRefGoogle Scholar
  108. Liu SX, Athar M, Lippai I, Waldren C, Hei TK (2001b) Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc Natl Acad Sci 98(4):1643–1648CrossRefGoogle Scholar
  109. Liu Q, Hilsenbeck S, Gazitt Y (2003) Arsenic trioxide–induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL. Blood 101(10):4078–4087CrossRefGoogle Scholar
  110. Louria-Hayon I, Grossman T, Sionov RV, Alsheich O, Pandolfi PP, Haupt Y (2003) The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation. J Biol Chem 278(35):33134–33141CrossRefGoogle Scholar
  111. Lu TH, Su CC, Chen YW, Yang CY, Wu CC, Hung DZ, Chen CH, Cheng PW, Liu SH, Huang CF (2011) Arsenic induces pancreatic β-cell apoptosis via the oxidative stress-regulated mitochondria-dependent and endoplasmic reticulum stress-triggered signaling pathways. Toxicol Lett 201(1):15–26CrossRefGoogle Scholar
  112. Luger K, Rechsteiner TJ, Flaus AJ, Waye MM, Richmond TJ (1997) Characterization of nucleosome core particles containing histone proteins made in bacteria1. J Mol Biol 272(3):301–311CrossRefGoogle Scholar
  113. Lv L, An X, Li H, Ma L (2016) Effect of miR-155 knockdown on the reversal of doxorubicin resistance in human lung cancer A 549/dox cells. Oncol Lett 11(2):1161–1166CrossRefGoogle Scholar
  114. Marsit CJ, Karagas MR, Schned A, Kelsey KT (2006) Carcinogen exposure and epigenetic silencing in bladder cancer. Ann N Y Acad Sci 1076:810–821CrossRefGoogle Scholar
  115. Martin-Chouly C, Morzadec C, Bonvalet M, Galibert MD, Fardel O, Vernhet L (2011) Inorganic arsenic alters expression of immune and stress response genes in activated primary human T lymphocytes. Mol Immunol 48(6-7):956–965CrossRefGoogle Scholar
  116. Martinez VD, Vucic EA, Becker-Santos DD, Gil L, Lam WL (2011a) Arsenic exposure and the induction of human cancers. J Toxicol 201:431287Google Scholar
  117. Martinez VD, Vucic EA, Adonis M, Gil L, Lam WL (2011b) Arsenic biotransformation as a cancer promoting factor by inducing DNA damage and disruption of repair mechanisms. Mol Biol Int 2011:718974CrossRefGoogle Scholar
  118. Maull EA, Ahsan H, Edwards J, Longnecker MP, Navas-Acien A, Pi J, Silbergeld EK, Styblo M, Tseng CH, Thayer KA, Loomis D (2012) Evaluation of the association between arsenic and diabetes: a National Toxicology Program workshop review. Environ Health Perspect 120(12):1658–1670CrossRefGoogle Scholar
  119. Mc Carty KM, Hanh HT, Kim KW (2011) Arsenic geochemistry and human health in South East Asia. Rev Environ Health 26(1):71–78CrossRefGoogle Scholar
  120. McVeigh GE, Allen PB, Morgan DR, Hanratty CG, Silke B (2001) Nitric oxide modulation of blood vessel tone identified by arterial waveform analysis. Clin Sci (Lond) 100:387–393CrossRefGoogle Scholar
  121. Medrano MJ, Boix R, Pastor-Barriuso R, Palau M, Damián J, Ramis R, Del Barrio JL, Navas-Acien A (2010) Arsenic in public water supplies and cardiovascular mortality in Spain. Environ Res 110(5):448–454CrossRefGoogle Scholar
  122. Meharg AA, Lombi E, Williams PN, Scheckel KG, Feldmann J, Raab A, Zhu Y, Islam R (2008) Speciation and localization of arsenic in white and brown rice grains. Environ Sci Technol 42(4):1051–1057CrossRefGoogle Scholar
  123. Meng XZ, Zheng TS, Chen X, Wang JB, Zhang WH, Pan SH, Jiang HC, Liu LX (2011) microRNA expression alteration after arsenic trioxide treatment in HepG2 cells. J Gastroenterol Hepatol 26:186–193CrossRefGoogle Scholar
  124. Meno SR, Nelson R, Hintze KJ, Self WT (2009) Exposure to monomethylarsonous acid (MMAIII) leads to altered selenoprotein synthesis in a primary human lung cell model. Toxicol Appl Pharmacol 239(2):130–136CrossRefGoogle Scholar
  125. Meyer S, Matissek M, Müller SM, Taleshi MS, Ebert F, Francesconi KA, Schwerdtle T (2014) In vitro toxicological characterisation of three arsenic-containing hydrocarbons. Metallomics 6(5):1023–1033CrossRefGoogle Scholar
  126. Meyer S, Raber G, Ebert F, Leffers L, Mueller SM, Taleshi MS, Francesconi KA, Schwerdtle T (2015) In vitro toxicological characterisation of arsenic-containing fatty acids and three of their metabolites. Toxicol Res 4(5):1289–1296CrossRefGoogle Scholar
  127. Mitra A, Chatterjee S, Gupta DK (2017a) Uptake, transport, and remediation of arsenic by algae and higher plant. In: Gupta DK, Chatterjee S (eds) Arsenic contamination in the environment: the issues and solution. Springer International Publishing AG, Cham, pp 145–169CrossRefGoogle Scholar
  128. Mitra A, Chatterjee S, Moogouei R, Gupta DK (2017b) Arsenic accumulation in rice and probable mitigation approaches: a review. Agronomy 7:67. Scholar
  129. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 6:1799–1805Google Scholar
  130. Muenyi CS, Ljungman M, States CJ (2015) Arsenic disruption of DNA damage responses—potential role in carcinogenesis and chemotherapy. Biomolecules 5(4):2184–2193CrossRefGoogle Scholar
  131. Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, Lodh D, Rahman MM, Chakraborti D (2006) Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J Health Popul Nutr 1:142–163Google Scholar
  132. Naranmandura H, Suzuki N, Suzuki KT (2006) Trivalent arsenicals are bound to proteins during reductive methylation. Chem Res Toxicol 19:1010–1018CrossRefGoogle Scholar
  133. Naranmandura H, Xu S, Sawata T, Hao WH, Liu H, Bu N, Ogra Y, Lou YJ, Suzuki N (2011a) Mitochondria are the main target organelle for trivalent monomethylarsonous acid (MMAIII)-induced cytotoxicity. Chem Res Toxicol 24(7):1094–1103CrossRefGoogle Scholar
  134. Naranmandura H, Carew MW, Xu S, Lee J, Leslie EM, Weinfeld M, Le XC (2011b) Comparative toxicity of arsenic metabolites in human bladder cancer EJ-1 cells. Chem Res Toxicol 24(9):1586–1596CrossRefGoogle Scholar
  135. Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121:295–302CrossRefGoogle Scholar
  136. NRC (National Research Council) (2014) Critical aspects of EPA’s IRIS assessment of inorganic arsenic: interim report. The National Academies Press, Washington, DCGoogle Scholar
  137. Okkenhaug G, Zhu YG, He J, Li X, Luo L, Mulder J (2012) Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice. Environ Sci Technol 46(6):3155–3162CrossRefGoogle Scholar
  138. Parvez F, Chen Y, Brandt-Rauf PW, Slavkovich V, Islam T, Ahmed A, Argos M, Hassan R, Yunus M, Haque SE, Balac O (2010) A prospective study of respiratory symptoms associated with chronic arsenic exposure in Bangladesh: findings from the Health Effects of Arsenic Longitudinal Study (HEALS). Thorax 65(6):528–533CrossRefGoogle Scholar
  139. Parvez F, Wasserman GA, Factor-Litvak P, Liu X, Slavkovich V, Siddique AB, Sultana R, Sultana R, Islam T, Levy D, Mey JL (2011) Arsenic exposure and motor function among children in Bangladesh. Environ Health Perspect 119(11):1665–1670CrossRefGoogle Scholar
  140. Paul S, Bhattacharjee P (2016) Epigenetics and arsenic toxicity. In: States JC (ed) Arsenic: exposure sources, health risks, and mechanisms of toxicity. John Wiley & Sons, Inc., Hoboken, New Jersey, pp 421–437Google Scholar
  141. Peters BA, Hall MN, Liu X, Slavkovich V, Ilievski V, Alam S, Siddique AB, Islam T, Graziano JH, Gamble MV (2015) Renal function is associated with indicators of arsenic methylation capacity in Bangladeshi adults. Environ Res 143:123–130CrossRefGoogle Scholar
  142. Pozo-Molina G, Ponciano-Gómez A, Rivera-González GC, Hernandez-Zavala A, Garrido E (2015) Arsenic-induced S phase cell cycle lengthening is associated with ROS generation, p53 signaling and CDC25A expression. Chem Biol Interact 238:170–179CrossRefGoogle Scholar
  143. Punshon T, Jackson BP, Meharg AA, Warczack T, Scheckel K, Guerinot ML (2017) Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci Total Environ 581:209–220CrossRefGoogle Scholar
  144. Rahman MA, Hasegawa H, Rahman M, Rahman MA, Miah MAM (2007) Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere 69:942–948CrossRefGoogle Scholar
  145. Rahman A, Vahter M, Ekstrom EC, Persson LA (2010) Arsenic exposure in pregnancy increases the risk of lower respiratory tract infection and diarrhea during infancy in Bangladesh. Environ Health Perspect 119:719–724CrossRefGoogle Scholar
  146. Ramirez T, Brocher J, Stopper H, Hock R (2008) Sodium arsenite modulates histone acetylation, histone deacetylase activity and HMGN protein dynamics in human cells. Chromosoma 117:147–157CrossRefGoogle Scholar
  147. Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79(933):391–396CrossRefGoogle Scholar
  148. Ray PD, Yosim A, Fry RC (2014) Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: strategies and challenges. Front Genet 5:201CrossRefGoogle Scholar
  149. Rehman K, Naranmandura H (2012) Arsenic metabolism and thioarsenicals. Metallomics 4:881–892CrossRefGoogle Scholar
  150. Rehman K, Chen Z, Wang WW, Wang YW, Sakamoto A, Zhang YF, Naranmandura H, Suzuki N (2012) Mechanisms underlying the inhibitory effects of arsenic compounds on protein tyrosine phosphatase (PTP). Toxicol Appl Pharmacol 263:273–280CrossRefGoogle Scholar
  151. Reichard JF, Puga A (2010) Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics 2:87–104CrossRefGoogle Scholar
  152. Ren X, McHale CM, Skibola CF, Smith AH, Smith MT, Zhang L (2011) An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. Environ Health Perspect 119:11–19CrossRefGoogle Scholar
  153. Roy P, Saha A (2002) Metabolism and toxicity of arsenic: a human carcinogen. Curr Sci 10:38–45Google Scholar
  154. Ruiz-Ramos R, Lopez-Carrillo L, Rios-Perez AD, De Vizcaya-Ruiz A, Cebrian ME (2009) Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-kappaB activation and cell proliferation in human breast cancer MCF-7 cells. Mutat Res 674:109–115CrossRefGoogle Scholar
  155. Sablina A, Budanov AV, Ilyinskaya GV, Larissa S, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11:1306–1313CrossRefGoogle Scholar
  156. Saha JC, Dikshit AK, Bandyopadhyay M, Saha KC (1999) A review of arsenic poisoning and its effects on human health. Crit Rev Environ Sci Technol 29:281–313CrossRefGoogle Scholar
  157. Salazar AM, Ostrosky-Wegman P (2015) Genotoxicity. In: States JC (ed) Arsenic: exposure sources, health risks, and mechanisms of toxicity. John Wiley & Sons, Inc., Hoboken, New Jersey, pp 347–367Google Scholar
  158. Sanchez-Pena LC, Petrosyan P, Morales M, Gonzalez NB, Gutierrez-Ospina G, Del Razo LM, Gonsebatt ME (2010) Arsenic species, AS3MT amount, and AS3MT gene expression in different brain regions of mouse exposed to arsenite. Environ Res 110:428–434CrossRefGoogle Scholar
  159. Saxe JK, Bowers TS, Reid KR (2006) Arsenic. In: Morrison RD, Murphy BL (eds) Environmental forensics: contaminant specific guide. Academic Press, Burlington, pp 279–292Google Scholar
  160. Shen H, Xu W, Zhang J, Chen M, Martin FL, Xia Y, Liu L, Dong S, Zhu YG (2013) Urinary metabolic biomarkers link oxidative stress indicators associated with general arsenic exposure to male infertility in a Han Chinese population. Environ Sci Technol 47(15):8843–8851Google Scholar
  161. Signes-Pastor AJ, Mitra K, Sarkhel S, Hobbes M, Burló F, De Groot WT, Carbonell-Barrachina AA (2008) Arsenic speciation in food and estimation of the dietary intake of inorganic arsenic in a rural village of West Bengal, India. J Agric Food Chem 56(20):9469–9474CrossRefGoogle Scholar
  162. Singh SK (2017) Conceptual framework of a cloud-based decision support system for arsenic health risk assessment. Environ Syst Decisions 37:435–450Google Scholar
  163. Spivey A (2011) Arsenic and infectious disease: a potential factor in morbidity among Bangladeshi children. Environ Health Perspect 119:218Google Scholar
  164. Srivastava RK, Li C, Chaudhary SC, Ballestas ME, Elmets CA, Robbins DJ, Matalon S, Deshane JS, Afaq F, Bickers DR, Athar M (2013) Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption. Toxicol Appl Pharmacol 272(3):879–887CrossRefGoogle Scholar
  165. Steinmaus C, Moore LE, Shipp M, Kalman D, Rey OA, Biggs ML, Hopenhayn C, Bates MN, Zheng S, Wiencke JK, Smith AH (2007) Genetic polymorphisms in MTHFR 677 and 1298, GSTM1 and T1, and metabolism of arsenic. J Toxic Environ Health A 70(2):159–170CrossRefGoogle Scholar
  166. Steinmaus C, Ferreccio C, Acevedo J, Yuan Y, Liaw J, Duran V, Cuevas S, Garcia J, Meza R, Valdes R, Valdes G, Benitez H, Vander Linde V, Villagra V, Cantor KP, Moore LE, Perez SG, Steinmaus S, Smith AH (2014) Increased lung and bladder cancer incidence in adults after in utero and early-life arsenic exposure. Cancer Epidemiol Biomark Prev 23:1529–1538CrossRefGoogle Scholar
  167. Stilwell DE, Gorny KD (1997) Contamination of soil with copper, chromium, and arsenic under decks built from pressure treated wood. Bull Environ Contam Toxicol 58:22–29CrossRefGoogle Scholar
  168. Sun GX, Williams PN, Carey AM, Zhu YG, Deacon C, Raab A, Feldmann J, Islam RM, Meharg AA (2008) Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environ Sci Technol 42(19):7542–7546CrossRefGoogle Scholar
  169. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065CrossRefGoogle Scholar
  170. Syed EH, Poudel KC, Sakisaka K, Yasuoka J, Ahsan H, Jimba M (2012) Quality of life and mental health status of arsenic-affected patients in a Bangladeshi population. J Health Popul Nutr 30(3):262–269CrossRefGoogle Scholar
  171. Tabacova S, Hunter ES III, Gladen BC (1996) Developmental toxicity of inorganic arsenic in whole embryo culture: oxidation state, dose, time, and gestational age dependence. Toxicol Appl Pharmacol 138(2):298–307CrossRefGoogle Scholar
  172. Takahashi M, Barrett JC, Tsutsui T (2002) Transformation by inorganic arsenic compounds of normal Syrian hamster embryo cells into a neoplastic state in which they become anchorage-independent and cause tumors in newborn hamsters. Int J Cancer 99(5):629–634CrossRefGoogle Scholar
  173. Talukdar D (2017) Epigenetics in arsenic toxicity: mechanistic response, alterations, and regulations. In: Gupta DK, Chatterjee S (eds) Arsenic contamination in the environment. Springer International Publishing AG, Cham, pp 67–101CrossRefGoogle Scholar
  174. Thomas David J (2016) The chemistry and metabolism of arsenic. In: States JC (ed) Arsenic: exposure sources, health risks, and mechanisms of toxicity. John Wiley & Sons, Inc., Hoboken, New Jersey, pp 81–109Google Scholar
  175. Tokar EJ, Diwan BA, Waalkes MP (2010) Arsenic exposure transforms human epithelial stem/progenitor cells into a cancer stem-like phenotype. Environ Health Perspect 118(1):108–115CrossRefGoogle Scholar
  176. Torres-Escribano S, Leal M, Velez D, Montoro R (2008) Total and inorganic arsenic concentrations in rice sold in Spain, effect of cooking, and risk assessments. Environ Sci Technol 42:3867–3872CrossRefGoogle Scholar
  177. Tsuji JS, Yost LJ, Barraj LM, Scrafford CG, Mink PJ (2007) Use of background inorganic arsenic exposures to provide perspective on risk assessment results. Regul Toxicol Pharmacol 48:59–68CrossRefGoogle Scholar
  178. US EPA (US Environmental Protection Agency) (2014) Inorganic arsenic: toxicity and exposure assessment for children’s health.
  179. US FDA (U.S. Food and Drug Administration) (2016) Arsenic in rice and rice products risk assessment report. Available at.
  180. Vahidnia A, Van der Voet G, De Wolff F (2007) Arsenic neurotoxicity—a review. Hum Exp Toxicol 26:823–832CrossRefGoogle Scholar
  181. Vahter M (2008) Health effects of early life exposure to arsenic. Basic Clin Pharmacol Toxicol 120:204–211CrossRefGoogle Scholar
  182. Vahter ME, Li L, Nermell B, Rahman A, El Arifeen S, Rahman M et al (2006) Arsenic exposure in pregnancy: a population-based study in Matlab, Bangladesh. J Health Popul Nutr 24:236–245Google Scholar
  183. Valko M, Rhodes C, Moncol J, Izakovic MM, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40CrossRefGoogle Scholar
  184. Vogt BL, Rossman TG (2001) Effects of arsenite on p53, p21 and cyclin D expression in normal human fibroblasts—a possible mechanism for arsenite’s comutagenicity. Mutat Res 478(1):159–168CrossRefGoogle Scholar
  185. Walkes MP, Qu W, Tokar EJ, Kissling GE, Dixon D (2014) Lung tumors in mice induced by “whole life” inorganic arsenic exposure at human relevant doses. Arch Toxicol 88(8):1619–1629CrossRefGoogle Scholar
  186. Wang TS, Hsu TY, Chung CH, Wang AS, Bau DT, Jan KY (2001) Arsenite induces oxidative DNA adducts and DNA-protein cross-links in mammalian cells. Free Radic Biol Med 31(3):321–330CrossRefGoogle Scholar
  187. Wang Z, Zhao Y, Smith E, Goodall GJ, Drew PA, Brabletz T, Yang C (2011) Reversal and prevention of arsenic induced human bronchial epithelial cell malignant transformation by microRNA200b. Toxicol Sci 121:110–122CrossRefGoogle Scholar
  188. Wang WL, Xu SY, Ren ZG, Tao L, Jiang JW, Zheng SS (2015) Application of metagenomics in the human gut microbiome. World J Gastroenterol 21:803–814CrossRefGoogle Scholar
  189. Watanabe T, Hirano S (2013) Metabolism of arsenic and its toxicological relevance. Arch Toxicol 87(6):969–979CrossRefGoogle Scholar
  190. WHO (2001) Arsenic and arsenic compounds. World Health Organization, GenevaGoogle Scholar
  191. WHO-IARC (2011) Arsenic in drinking waterGoogle Scholar
  192. Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41(19):6854–6859CrossRefGoogle Scholar
  193. Wiwanitkit V (2015) Contamination of arsenic species in rice and the calculation for risk of cancer. J Cancer Res Ther 11:1044CrossRefGoogle Scholar
  194. Yih LH, Lee TC (2000) Arsenite induces p53 accumulation through an ATM-dependent pathway in human fibroblasts. Cancer Res 60(22):6346–6352Google Scholar
  195. Yong Villalobos L, GonzálezMorales SI, Wrobel K, Gutiérrez Alanis D, Cervantes Peréz SA, Hayano Kanashiro C, OropezaAburto A, CruzRamírez A, Martínez O, Herrera Estrella L (2015) Methylome analysis reveals an important role for epigenetic changes in the regulation of the Arabidopsis response to phosphate starvation. Proc Natl Acad Sci U S A 112:E7293–E7302CrossRefGoogle Scholar
  196. Yorifuji T, Tsuda T, Doi H, Grandjean P (2011) Cancer excess after arsenic exposure from contaminated milk powder. Environ Health Prev Med 16(3):164–170CrossRefGoogle Scholar
  197. Yuan Y, Marshall G, Ferreccio C, Steinmaus C, Liaw J, Bates M, Smith AH (2010) Kidney cancer mortality: fifty-year latency patterns related to arsenic exposure. Epidemiology 21:103–108CrossRefGoogle Scholar
  198. Zhang AH, Bin HH, Pan XL, Xi XG (2007) Analysis of p16 gene mutation, deletion and methylation in patients with arseniasis produced by indoor unventilated stove coal usage in Guizhou, China. J Toxicol Environ Health A 70:970–975CrossRefGoogle Scholar
  199. Zhang Y, Ying J, Chen J, Hu C (2012) Assessing the genotoxic potentials of roxarsone in V79 cells using the alkaline Comet assay and micronucleus test. Mutat Res 741:65–69CrossRefGoogle Scholar
  200. Zhang W, Chen L, Zhou Y, Wu Y, Zhang L (2016) Biotransformation of inorganic arsenic in a marine herbivorous fish Siganus fuscescens after dietborne exposure. Chemosphere 147:297–304CrossRefGoogle Scholar
  201. Zheng L, Kuo CC, Fadrowski J, Agnew J, Weaver VM, Navas-Acien A (2014) Arsenic and chronic kidney disease: a systematic review. Curr Environ Health Rep 1(3):192–207CrossRefGoogle Scholar
  202. Zhou Q, Xi S (2018) A review on arsenic carcinogenesis: epidemiology, metabolism, genotoxicity and epigenetic changes. Regul Toxicol Pharmacol 99:78–88CrossRefGoogle Scholar
  203. Zhou X, Li Q, Arita A, Sun H, Costa M (2009) Effects of nickel, chromate, and arsenite on histone 3 lysine methylation. Toxicol Appl Pharmacol 236:78–84CrossRefGoogle Scholar
  204. Zhou LG, Liu YH, Liu ZC, Kong DY, Duan M, Luo LJ (2010) Genome wide identification and analysis of drought responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168CrossRefGoogle Scholar
  205. Ziech D, Franco R, Pappa A, Panayiotidis MI (2011) Reactive oxygen species (ROS)–induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res 711:167–173CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anindita Mitra
    • 1
  • Soumya Chatterjee
    • 2
  • Dharmendra K. Gupta
    • 3
  1. 1.Department of ZoologyBankura Christian CollegeBankuraIndia
  2. 2.Defence Research Laboratory, DRDOTezpurIndia
  3. 3.Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS)HannoverGermany

Personalised recommendations