A Robust Weighted Goal Programming Approach for Supplier Selection Problem with Inventory Management and Vehicle Allocation in Uncertain Environment

  • Lishuai Wang
  • Jun LiEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1002)


This research work deals with the multi-product multi-period supplier selection problem with inventory management and vehicle allocation in uncertain environment. In this paper, a robust weighted goal programming approach is developed to solve the multi-product multi-period supplier selection problem. The purpose is to consider parameter uncertainty by controlling the impact of estimation errors on the procurement strategy performance. In the proposed model, total costs, rejected items and late-delivered items are considered as three objectives that have to be minimized over the decision horizon. To illustrate the feasibility of the proposed model, a numerical example is presented.


Supplier selection Robust weighted goal programming Multi-objective optimization 



We are thankful for financial support from the National Natural Science Foundations (Grant No. 71571031).


  1. 1.
    Alfares, H.K., Turnadi, R.: Lot sizing and supplier selection with multiple items, multiple periods, quantity discounts, and backordering. Comput. Ind. Eng. 116, 59–71 (2018)CrossRefGoogle Scholar
  2. 2.
    Aouam, T., Brahimi, N.: Integrated production planning and order acceptance under uncertainty: A robust optimization approach. Eur. J. Oper. Res. 228(3), 504–515 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aras, N., Bilge, Ü.: Robust supply chain network design with multi-products for a company in the food sector. Appl. Math. Model. 60 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Basnet, C., Leung, J.M.Y.: Inventory lot-sizing with supplier selection. Comput. Oper. Res. 32(1), 1–14 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust optimization. Princeton University Press, Princeton 2(3), 542 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. Siam Rev. 53(3), 464–501 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bojd, F.G., Koosha, H.: A robust goal programming model for the capital budgeting problem. J. Oper. Res. Soc. 69(7), 1105–1113 (2018)CrossRefGoogle Scholar
  10. 10.
    Charnes, A., Cooper, W.W., Ferguson, R.O.: Optimal estimation of executive compensation by linear programming. Manag. Sci. 1(2), 138–151 (1955)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chassein, A., Goerigk, M.: Compromise solutions for robust combinatorial optimization with variable-sized uncertainty. Eur. J. Oper. Res. 269(2), 544–555 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Faez, F., Ghodsypour, S.H., O’Brien, C.: Vendor selection and order allocation using an integrated fuzzy case-based reasoning and mathematical programming model. Int. J. Prod. Econ. 121(2), 395–408 (2010)CrossRefGoogle Scholar
  13. 13.
    Ghahtarani, A., Najafi, A.A.: Robust goal programming for multi-objective portfolio selection problem. Econ. Model. 33(33), 588–592 (2013)CrossRefGoogle Scholar
  14. 14.
    Gorji, M.H., Setak, M., Karimi, H.: Optimizing inventory decisions in a two-level supply chain with order quantity constraints. Appl. Math. Model. 38(3), 814–827 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hanks RW, Weir JD, Lunday BJ (2017) Robust goal programming using different robustness echelons via norm-based and ellipsoidal uncertainty sets. Eur. J. Oper. Res.
  16. 16.
    Hombach, B.C.W.G.L.E.: Robust and sustainable supply chains under market uncertainties and different risk attitudes-a case study of the german biodiesel market. Eur. J. Oper. Res 269, 302–312 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kim, J., Chung, B.D., Kang, Y., Jeong, B.: Robust optimization model for closed-loop supply chain planning under reverse logistics flow and demand uncertainty. J. Clean. Prod. (2018).
  18. 18.
    Kuchta, D.: Robust goal programming. Control. Cybern. 33(3), 501–510 (2004)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Lei, L., Zabinsky, Z.B.: Incorporating uncertainty into a supplier selection problem. Int. J. Prod. Econ. 134(2), 344–356 (2011)CrossRefGoogle Scholar
  20. 20.
    Mansini, S.M.W.P.R.: The supplier selection problem with quantity discounts and truckload shipping. Omega 40(4), 445–455 (2012)CrossRefGoogle Scholar
  21. 21.
    Pan, A.C.: Allocation of order quantity among suppliers. J. Supply Chain. Manag. 25(3), 36–39 (1989)Google Scholar
  22. 22.
    Soyster, A.L.: Technical note-convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21(5), 1154–1157 (1973)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Stanley, E.D., Honig, D.P., Gainen, L.: Linear programming in bid evaluation. Nav. Res. Logist. 1(1), 48–54 (2010)CrossRefGoogle Scholar
  24. 24.
    Thorsen, A., Yao, T.: Robust inventory control under demand and lead time uncertainty. Ann. Oper. Res. 257(1–2), 207–236 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ventura, J.A., Valdebenito, V.A., Golany, B.: A dynamic inventory model with supplier selection in a serial supply chain structure. Eur. J. Oper. Res. 230(2), 258–271 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Yua, M.C., Lin, H.C.: Fuzzy multi-objective vendor selection under lean procurement. Eur. J. Oper. Res. 219(2), 305–311 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Economics and ManagementUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations