Advertisement

Regenerative Medicine in Rhinology

  • Kıvanç Günhan
  • Uzdan Uz
Chapter

Abstract

Regenerative medicine, using stem cells with or without scaffolds, allows surgeons to treat congenital or acquired defects with normal structure and functions. Although stem cell and regenerative medicine are nowadays used quite often in some areas of medicine, it is obvious that they are in their crawling stage in reconstructive surgery and in rhinology. However, it is not difficult to predict that it will become popular in the next few decades and will be among the treatment regimens in the guidelines. The various developments in isolation, duplication, and differentiation of stem cells and three-dimensional scaffolds suggest that some of the more frequently applied therapies may be shelved in the close future. Stem cells are categorized as embryonic stem cells, induced pluripotent stem cells and adult stem cells. Adult stem cells are generally preferred in practice nowadays due to ease of isolation and differentiation stages. The purpose of this section is to provide information on stem cell applications and regenerative medicine in rhinology at present and in close future.

Keywords

Regenerative medicine Rhinology Embryonic stem cells Pluripotent stem cells Adult stem cells 

References

  1. 1.
    Walia B, Satija N, Tripathi RP, Gangenahalli GU. Induced pluripotent stem cells: fundamentals and applications of the reprogramming process and its ramifications on regenerative medicine. Stem Cell Rev. 2012;8(1):100–15.Google Scholar
  2. 2.
    Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration. 2013;85(1):3–10.PubMedGoogle Scholar
  3. 3.
    Atala A. Tissue engineering, stem cells and cloning: current concepts and changing trends. Expert Opin Biol Ther. 2005;5(7):879–92.PubMedGoogle Scholar
  4. 4.
    Hess PG. Risk of tumorigenesis in first-in-human trials of embryonic stem cell neural derivatives: Ethics in the face of long-term uncertainty. Account Res. 2009;16(4):175–98.PubMedGoogle Scholar
  5. 5.
    Camporesi S. The context of embryonic development and its ethical relevance. Biotechnol J. 2007;2(9):1147–53.PubMedGoogle Scholar
  6. 6.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.PubMedGoogle Scholar
  7. 7.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5903):949–53.PubMedGoogle Scholar
  10. 10.
    Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol. 2009;27(8):743–5.PubMedGoogle Scholar
  11. 11.
    Korbling M, Estrov Z. Adult stem cells for tissue repair - a new therapeutic concept? N Engl J Med. 2003;349(6):570–82.PubMedGoogle Scholar
  12. 12.
    McCormick JB, Huso HA. Stem cells and ethics: current issues. J Cardiovasc Transl Res. 2010;3(2):122–7.PubMedGoogle Scholar
  13. 13.
    Wu CH, Lee FK, Suresh Kumar S, Ling QD, Chang Y, Chang Y, et al. The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials. 2012;33(33):8228–39.PubMedGoogle Scholar
  14. 14.
    Mamidi MK, Nathan KG, Singh G, Thrichelvam ST, Mohd Yusof NA, Fakharuzi NA, et al. Comparative cellular and molecular analyses of pooled bone marrow multipotent mesenchymal stromal cells during continuous passaging and after successive cryopreservation. J Cell Biochem. 2012;113(10):3153–64.PubMedGoogle Scholar
  15. 15.
    Kisiel AH, McDuffee LA, Masaoud E, Bailey TR, Esparza Gonzalez BP, Nino-Fong R. Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. Am J Vet Res. 2012;73(8):1305–17.PubMedGoogle Scholar
  16. 16.
    Vishnubalaji R, Al-Nbaheen M, Kadalmani B, Aldahmash A, Ramesh T. Skin-derived multipotent stromal cells--an archrival for mesenchymal stem cells. Cell Tissue Res. 2012;350(1):1–12.PubMedGoogle Scholar
  17. 17.
    Tobita M, Orbay H, Mizuno H. Adipose-derived stem cells: current findings and future perspectives. Discov Med. 2011;11(57):160–70.PubMedGoogle Scholar
  18. 18.
    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Uz U, Günhan K. Stem cell and regenerative medicine in rhinology: review. Turk J Rhinol. 2015;4(2):90–6.Google Scholar
  20. 20.
    Nose Y, Okubo H. Artificial organs versus regenerative medicine: is it true? Artif Organs. 2003;27(9):765–71.PubMedGoogle Scholar
  21. 21.
    Beule AG. Physiology and pathophysiology of respiratory mucosa of the nose and the paranasal sinuses. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2010;9. Doc07Google Scholar
  22. 22.
    Uz U, Chen B, Palmer JN, Cingi C, Unlu H, Cohen NA. Effects of thymoquinone and montelukast on sinonasal ciliary beat frequency. Am J Rhinol Allergy. 2014;28(2):122–5.PubMedGoogle Scholar
  23. 23.
    Wang DY, Li Y, Yan Y, Li C, Shi L. Upper airway stem cells: understanding the nose and role for future cell therapy. Curr Allergy Asthma Rep. 2015;15(1):490.PubMedGoogle Scholar
  24. 24.
    Huang TW, Young YH, Cheng PW, Chan YH, Young TH. Culture of nasal epithelial cells using chitosan-based membranes. Laryngoscope. 2009;119(10):2066–70.PubMedGoogle Scholar
  25. 25.
    Lee KC, Lee NH, Ban JH, Jin SM. Surgical treatment using an allograft dermal matrix for nasal septal perforation. Yonsei Med J. 2008;49(2):244–8.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Kobayashi K, Suzuki T, Nomoto Y, Tada Y, Miyake M, Hazama A, et al. A tissue-engineered trachea derived from a framed collagen scaffold, gingival fibroblasts and adipose-derived stem cells. Biomaterials. 2010;31(18):4855–63.PubMedGoogle Scholar
  27. 27.
    Omori K, Nakamura T, Kanemaru S, Asato R, Yamashita M, Tanaka S, et al. Regenerative medicine of the trachea: the first human case. Ann Otol Rhinol Laryngol. 2005;114(6):429–33.PubMedGoogle Scholar
  28. 28.
    Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023–30.Google Scholar
  29. 29.
    Gonfiotti A, Jaus MO, Barale D, Baiguera S, Comin C, Lavorini F, et al. The first tissue-engineered airway transplantation: 5-year follow-up results. Lancet. 2014;383(9913):238–44.PubMedGoogle Scholar
  30. 30.
    Yanaga H, Imai K, Yanaga K. Generative surgery of cultured autologous auricular chondrocytes for nasal augmentation. Aesthet Plast Surg. 2009;33(6):795–802.Google Scholar
  31. 31.
    Sandor GK, Numminen J, Wolff J, Thesleff T, Miettinen A, Tuovinen VJ, et al. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med. 2014;3(4):530–40.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Gunhan K, Bariskan S, Uz U, Vatansever S, Kivanc M. 13-93B3 bioactive glass: a new scaffold for transplantation of stem cell-derived chondrocytes. J Craniofac Surg. 2018;29(1):233–6.PubMedGoogle Scholar
  33. 33.
    Kim HJ, Im GI. Combination of transforming growth factor-beta2 and bone morphogenetic protein 7 enhances chondrogenesis from adipose tissue-derived mesenchymal stem cells. Tissue Eng Part A. 2009;15(7):1543–51.PubMedGoogle Scholar
  34. 34.
    Duda GN, Haisch A, Endres M, Gebert C, Schroeder D, Hoffmann JE, et al. Mechanical quality of tissue engineered cartilage: results after 6 and 12 weeks in vivo. J Biomed Mater Res. 2000;53(6):673–7.PubMedGoogle Scholar
  35. 35.
    Hofmann S, Knecht S, Langer R, Kaplan DL, Vunjak-Novakovic G, Merkle HP, et al. Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells. Tissue Eng. 2006;12(10):2729–38.PubMedGoogle Scholar
  36. 36.
    Gonzalez JS, Alvarez VA. Mechanical properties of polyvinyl alcohol/hydroxyapatite cryogel as potential artificial cartilage. J Mech Behav Biomed Mater. 2014;34:47–56.PubMedGoogle Scholar
  37. 37.
    Planas J. The use of Integra in rhinoplasty. Aesthet Plast Surg. 2011;35(1):5–12.Google Scholar
  38. 38.
    Altman AM, Yan Y, Matthias N, Bai X, Rios C, Mathur AB, et al. IFATS collection: Human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells. 2009;27(1):250–8.Google Scholar
  39. 39.
    Matsuda K, Falkenberg KJ, Woods AA, Choi YS, Morrison WA, Dilley RJ. Adipose-derived stem cells promote angiogenesis and tissue formation for in vivo tissue engineering. Tissue Eng Part A. 2013;19(11–12):1327–35.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhao J, Hu L, Liu J, Gong N, Chen L. The effects of cytokines in adipose stem cell-conditioned medium on the migration and proliferation of skin fibroblasts in vitro. Biomed Res Int. 2013;2013:578479.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Formigli L, Paternostro F, Tani A, Mirabella C, Quattrini A, Nosi D, et al. MSCs seeded on bioengineered scaffolds improve skin wound healing in rats. Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2015.Google Scholar
  42. 42.
    Chou RH, Lu CY, Wei L, Fan JR, Yu YL, Shyu WC. The potential therapeutic applications of olfactory ensheathing cells in regenerative medicine. Cell Transplant. 2014;23(4–5):567–71.PubMedGoogle Scholar
  43. 43.
    Goldstein BJ, Fang H, Youngentob SL, Schwob JE. Transplantation of multipotent progenitors from the adult olfactory epithelium. Neuroreport. 1998;9(7):1611–7.PubMedGoogle Scholar
  44. 44.
    Jang W, Lambropoulos J, Woo JK, Peluso CE, Schwob JE. Maintaining epitheliopoietic potency when culturing olfactory progenitors. Exp Neurol. 2008;214(1):25–36.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Mariano ED, Teixeira MJ, Marie SK, Lepski G. Adult stem cells in neural repair: Current options, limitations and perspectives. World J Stem Cells. 2015;7(2):477–82.PubMedPubMedCentralGoogle Scholar
  46. 46.
    McCurdy RD, Feron F, Perry C, Chant DC, McLean D, Matigian N, et al. Cell cycle alterations in biopsied olfactory neuroepithelium in schizophrenia and bipolar I disorder using cell culture and gene expression analyses. Schizophr Res. 2006;82(2–3):163–73.PubMedGoogle Scholar
  47. 47.
    Arnold SE, Lee EB, Moberg PJ, Stutzbach L, Kazi H, Han LY, et al. Olfactory epithelium amyloid-beta and paired helical filament-tau pathology in Alzheimer disease. Ann Neurol. 2010;67(4):462–9.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Matigian N, Abrahamsen G, Sutharsan R, Cook AL, Vitale AM, Nouwens A, et al. Disease-specific, neurosphere-derived cells as models for brain disorders. Dis Model Mech. 2010;3(11–12):785–98.PubMedGoogle Scholar
  49. 49.
    Uzdan Uz, Kivanc Gunhan, Seda Vatansever, Mujde Kivanc, Ali Vefa Yuceturk, Novel Simple Strategy for Cartilage Tissue Engineering Using Stem Cells and Synthetic Polymer Scaffold. Journal of Craniofacial Surgery 30 (3):940–943.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kıvanç Günhan
    • 1
  • Uzdan Uz
    • 2
  1. 1.Department of OtorhinolaryngologyManisa Celal Bayar UniversityManisaTurkey
  2. 2.Department of OtorhinolaryngologyUniversity of Health Sciences, Izmir Bozyaka Training and Research HospitalİzmirTurkey

Personalised recommendations