Advertisement

Physiology of the Nose and Paranasal Sinuses

  • Mehmet Emre Dinç
  • Nuray Bayar Muluk
  • Becky M. Vonakis
Chapter

Abstract

The nasal area filters out particles and humidifies the air that goes to the lungs. It also acts as first-line immunological protection enabling the exposure of the inspired air to the mucosal membranes that hold immunoglobulin A (IgA). Breathing in through the nose, the air travels cranially in the nasal area and interacts with the olfactory nerves, which produces the smell sensation that is very well related to the sense of taste. A problem in association with this system can result in nasal symptoms such as postnasal drainage, headaches, facial pressure, congestion, and sinus infections. The mucosa of the respiratory system consists of pseudostratified epithelium with hair cells, along with muciparous, strial, and basal cells. Hair cells are the most differentiated cells of the nasal mucosa. The ciliated columnar epithelial mucosa that lines the nasal area and paranasal sinuses continues with the squamous epithelium of the anterior nasal cavity and pharynx, respectively. Ciliated epithelium occupies a more significant portion of the anterior nasal area in the newborn and laryngectomized individuals compared to others indicating the squamous metaplasia of ciliated epithelium, which develops as a reaction to the trauma of environmental exposures. The respiratory epithelium, previously regarded as a physical barrier, is greatly engaged in the nasal-associated lymphoid tissue (NALT); actually, the epithelial cells express major histocompatibility complex class II antigens, and Langerhans-type dendritic cells in the submucosal layer can present antigens to and trigger T-lymphocytes by interleukin 1 (IL-1). In this chapter, physiology of the nose and paranasal sinuses is presented in detail.

Keywords

Physiology Nose Paranasal sinuses Epithelium Hair cells Nasal-associated lymphoid tissue (NALT) 

References

  1. 1.
    Archer SM. Nasal Physiology. In: Meyers AD (Ed.). Medscape. http://emedicine.medscape.com/article/874771-overview#showall. Accessed 6 July 2015.
  2. 2.
    Gelardi M, Cassano P, Cassano M, Fiorella ML. Nasal cytology: description of hyperchromatic supranuclear stria as a possible marker for the anatomical and functional integrity of the ciliated cell. Am J Rhinol. 2003;17(5):263–8.PubMedGoogle Scholar
  3. 3.
    Rosenwasser LJ. Current understanding of the pathophysiology of allergic rhinitis. Immunol Allergy Clin N Am. 2011;31:433–9.Google Scholar
  4. 4.
    Barata LT, Ying S, Meng Q, et al. IL-4-and IL-5-positive T lymphocytes, eosinophils, and mast cells in allergen-induced late-phase cutaneous reactions in atopic subjects. J Allergy Clin Immunol. 1998;101:222–30.PubMedGoogle Scholar
  5. 5.
    Cole P. Physiology of the nose and paranasal sinuses. Clin Rev Allergy Immunol. 1998. Spring-Summer;16(1–2):25–54.PubMedGoogle Scholar
  6. 6.
    Pelikan Z, Pelikan-Filipek M. Cytologic changes in the nasal secretions during the late nasal response. J Allergy Clin Immunol. 1989;83:1068–79.PubMedGoogle Scholar
  7. 7.
    Jorissen M, Cassiman J-J. Relevance of the ciliary ultrastructure in primary and secondary dyskinesia: a review. Am J Rhinol. 1991;5(3):91–101.Google Scholar
  8. 8.
    Gelardi M, Fiorella ML, Leo G, Incorvaia C. Cytology in the diagnosis of rhinosinusitis. Pediatr Allergy Immunol. 2007;18:50–2.PubMedGoogle Scholar
  9. 9.
    Canonica GW, Compalati E. Minimal persistent inflammation in allergic rhinitis: implications for current treatment strategies. Clin Exp Immunol. 2009;158:260–71.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Hellquist HB, Olsen KE, Irander K, Karlsson E, Odkvist LM. Langerhans cells and subsets of lymphocytes in the nasal mucosa. APMIS. 1991;99:449–54.PubMedGoogle Scholar
  11. 11.
    Igarashi Y, Kaliner MA, Hausfeld JN, Irani AA, Schwartz LB, White MV. Quantification of resident inflammatory cells in the human nasal mucosa. J Allergy Clin Immunol. 1993;91:1082–93.PubMedGoogle Scholar
  12. 12.
    Pawankar R, Okuda MA. Comparative study of the characteristics of intraepithelial and lamina propria lymphocytes of the human nasal mucosa. Allergy. 1993;48:99–105.PubMedGoogle Scholar
  13. 13.
    Kurono Y, Shimamura K, Shigemi H, Mogi G. Inhibition of bacterial adherence by nasopharyngeal secretions. Ann Otol Rhinol Laryngol. 1991;100:455–8.PubMedGoogle Scholar
  14. 14.
    Ivarsson M, Lundberg C. Phagocytosis in the nasopharyngeal secretion by cells from the adenoid. Acta Otolaryngol. 2001;121:517–22.PubMedGoogle Scholar
  15. 15.
    Gelardi M, Incorvaia C, Passalacqua G, Quaranta N, Frati F. The classification of allergic rhinitis and its cytological correlate. Allergy. 2011;66:1624–5.PubMedGoogle Scholar
  16. 16.
    Pawankar R. Inflammatory mechanisms in allergic rhinitis. Curr Opin Allergy Clin Immunol. 2007;7:1–4.PubMedGoogle Scholar
  17. 17.
    Bernstein JA. Allergic and mixed rhintis: epidemiology and natural history. Allergy Asthma Proc. 2010;31:365–9.PubMedGoogle Scholar
  18. 18.
    Hauber HP, Bergeron C, Hamid Q. IL-9 in allergic inflammation. Int Arch Allergy Immunol. 2004;134:79–87.PubMedGoogle Scholar
  19. 19.
    Passalacqua G, Ciprandi G, Canonica GW. United airways disease: therapeutic aspects. Thorax. 2000;55:26–7.Google Scholar
  20. 20.
    Eifan AO, Durham SR. Pathogenesis of rhinitis. Clin Exp Allergy. 2016;46(9):1139–51.PubMedGoogle Scholar
  21. 21.
    Brozek JL, Bousquet J, Baena-Cagnani CE, et al. Global allergy and asthma European network, grading of recommendations assessment, development and evaluation working group. Allergic rhinitis and its impact on asthma (ARIA) guidelines: 2010 revision. J Allergy Clin Immunol. 2010;126:466–76.PubMedGoogle Scholar
  22. 22.
    Gelardi M, Marchisio P, Caimmi D, Incorvaia C, Albertario G, Bianchini S, et al. Pathophysiology, favoring factors, and associated disorders in otorhinosinusology. Pediatr Allergy Immunol. 2012;23:5–16.  https://doi.org/10.1111/j.1399-3038.2012.01323.x.CrossRefPubMedGoogle Scholar
  23. 23.
    Widdicombe JG. The physiology of the nose. Clin Chest Med. 1986;7(2):159–70.PubMedGoogle Scholar
  24. 24.
    Hasegawa M, Kern EB. The human nasal cycle. Mayo Clin Proc. 1977;52(1):28–34.PubMedGoogle Scholar
  25. 25.
    Kennedy DW, Zinreich SJ, Kumar AJ, et al. Physiologic mucosal changes within the nose and the ethmoid sinus: imaging of the nasal cycle by MRI. Laryngoscope. 1988;98(9):928–33.PubMedGoogle Scholar
  26. 26.
    Cole P, Haight JSJ. Posture and the nasal cycle. Ann Otol Rhinol Laryngol. 1986;95:233.PubMedGoogle Scholar
  27. 27.
    Stocksted P. Rhinometric measurements for determination of the nasal cycle. Acta Otolaryngol (Stockh). 1953.;(Suppl 109;43:159–75.Google Scholar
  28. 28.
    Cole P. The respiratory role of the upper airways. St. Louis, MO: Mosby; 1993. p. 1–59.Google Scholar
  29. 29.
    Munkholm M, Mortensen J. Mucociliary clearance: pathophysiologicalaspects. Clin Physiol Funct Imaging. 2014;34(3):171–7.PubMedGoogle Scholar
  30. 30.
    Wanner A, Salathe M, O’Riordan TG. Mucociliary clearance in the airways. Am J Respir Crit Care Med. 1996;154:1868–902.PubMedGoogle Scholar
  31. 31.
    Meeks M, Bush A. Primary ciliary dyskinesia (PCD). Pediatr Pulmonol. 2000;29:307–16.PubMedGoogle Scholar
  32. 32.
    Livraghi A, Randell SH. Cystic fibrosis and other respiratory diseases of impaired mucus clearance. Toxicol Pathol. 2007;35:116–29.PubMedGoogle Scholar
  33. 33.
    Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest. 2002;109:571–7.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med. 2010;363:2233–47.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Geurkink N. Nasalanatomy, physiology, and function. J Allergy Clin Immunol. 1983;72(2):123–8.PubMedGoogle Scholar
  36. 36.
    Jeremiah A, Cohen N. Nasal physiology. American Rhinologic Society. http://care.american-rhinologic.org/nasal_physiology. Accessed 6 July 2015.
  37. 37.
    Naclerio RM, Pinto J, Assanasen P, Baroody FM. Observations on the ability of the nose to warm and humidify inspired air. Rhinology. 2007;45(2):102–11.PubMedGoogle Scholar
  38. 38.
    Vokshoor A. Olfactory System Anatomy. In: Meyers AD (Ed.). Medscape. http://emedicine.medscape.com/article/835585-overview. Accessed 6 July 2015.
  39. 39.
    Leffingwell JC, Olfaction. Leffingwell & Associates. http://www.leffingwell.com/olfaction.htm. Accessed 6 July 2015.
  40. 40.
    Morrison EE, Costanzo RM. Morphology of the human olfactory epithelium. J Comp Neurol. 1990;297(1):1–13.PubMedGoogle Scholar
  41. 41.
    Ohloff G. Scent and fragrances. Berlin: Springer; 1994.Google Scholar
  42. 42.
    Nasal voice. Wikipedia. https://en.wikipedia.org/wiki/Nasal_voice. Accessed 6 July 2015.
  43. 43.
    Raphael GD, Meredith SD, Baraniuk JN, Kaliner M. Nasal reflexes. Am J Rhinol. 1988;2:8–12.Google Scholar
  44. 44.
    Eccles R. Pathophysiology of nasal symptoms. Am J Rhinol. 2000;14:335–8.PubMedGoogle Scholar
  45. 45.
    Green BG, Mason JR, Kare MR (editors). Chemical senses, Vol. 2, irritation. Marcel Dekker. New York; 1990, pp 141–170.Google Scholar
  46. 46.
    Kratschmer F. On reflexes from the nasal mucous membrane on respiration and circulation. Respir Physiol. 2001;127:93–104.PubMedGoogle Scholar
  47. 47.
    Betlejewski S, Betlejewski A, Burduk D, Owczarek A. Nasal-cardiac reflex. Otolaryngol Pol. 2003;57:613–8.PubMedGoogle Scholar
  48. 48.
    Schaller B, Probst R, Strebel S, Gratzl O. Trigeminocardiac reflex during surgery in the cerebellopontine angle. J Neurosurg. 1999;90:215–20.PubMedGoogle Scholar
  49. 49.
    Schaller B. Trigeminocardiac reflex: a clinical phenomenon or a new physiological entity? J Neurol. 2004;251:658–65.PubMedGoogle Scholar
  50. 50.
    Patow CA, Kaliner M. Nasal and cardiopulmonary reflexes. Eur Nose Throat J. 1984;63:78.Google Scholar
  51. 51.
    Widdicombe JG. Reflexes from the upper respiratory tract. In: Fishman AP, Cherniak NS, Widdicombe JG, Geiger SR (eds). Handbook of physiology. Section 3. The respiratory system. Volume II, control of breathing, part 1. American Physiological Society. Washington, DC. 1986, pp. 363–394.Google Scholar
  52. 52.
    Mygind N. Non-immunological factors. In: Mygind N. (editor) Nasal allergy. Oxford. Blackwell Scientific. Oxford. 1978, pp. 140–154.Google Scholar
  53. 53.
    Kaufman J, Chen JC, Wright GW. The effect of trigeminal resection on reflex bronchoconstriction after nasal and nasopharyngeal irritation in man. Am Rev Respir Dis. 1970;101:768–9.PubMedGoogle Scholar
  54. 54.
    Allen WF. Effect of various inhaled vapors on respiration and blood pressure in anesthetized, unanesthetized, sleeping, and anosmic subjects. Am J Phys. 1929;88:620–32.Google Scholar
  55. 55.
    Togias A. Mechanisms of nose-lung interaction. Allergy. 1999;54(Suppl 57):94–105.PubMedGoogle Scholar
  56. 56.
    Undem BJ, McAlexander M, Hunter DD. Neurobiology of the upper and lower airways. Allergy. 1999;54(Suppl 57):81–93.PubMedGoogle Scholar
  57. 57.
    Shoja MM, Tubbs RS, Ansarin K, Farahani RM. Proposal for the existence of a nasogastric reflex in humans, as a potential cause of upper gastrointestinal symptoms. Med Hypotheses. 2007;69(2):346–8. Epub 2007 Feb 28.PubMedGoogle Scholar
  58. 58.
    Schaller B. Trigemino-cardiac reflex during transsphenoidal surgery for pituitary adenomas. Clin Neurol Neurosurg. 2005;107:468–74.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mehmet Emre Dinç
    • 1
  • Nuray Bayar Muluk
    • 2
  • Becky M. Vonakis
    • 3
  1. 1.Department of OtorhinolaryngologyUniversity of Health Sciences, Okmeydanı Training and Research HospitalİstanbulTurkey
  2. 2.Department of Otorhinolaryngology, Medical FacultyKırıkkale UniversityKırıkkaleTurkey
  3. 3.Division of Allergy and Clinical Immunology, Department of MedicineJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations