The Role of Biotic and Abiotic Interactions in Summer Diapause in Cyclopoids: Conceptual Model and Field Validation in Southern Quebec Boreal Lakes

  • Bernadette Pinel-AlloulEmail author
  • Victor R. Alekseev
Part of the Monographiae Biologicae book series (MOBI, volume 92)


Cyclopoid copepods are a dominant component of freshwater zooplankton and the Cyclopidae is the most diverse family. Dormancy is a fundamental process of cyclopoid life history in permanent lakes and temporary ponds. In boreal lakes, cyclopoid diapause has been documented mainly in Northern Europe but more rarely in Northern America. We present the first assessment on summer diapausing cyclopoids (SDC) in 22 boreal lakes in southern Québec, which vary in their morphometry, tropic status, and predation pressure by fish or invertebrates. We developed a conceptual model to test the hypothesis that diapausing patterns of SDC in boreal lakes are a complex response depending primarily on morphometric and trophic features and secondly on the intensity of hypolimnetic anoxia and predation by fish or invertebrates. Using morphometric indices, lakes were classified in groups varying by the importance of wind-mixing, the strength of thermal stratification during summer, the potential of meromixis, and the risk of predation by fish or chaoborids. Three cyclopoid species (Diacyclops thomasi, Cyclops scutifer, Mesocyclops edax) dominated in all groups of lakes, while Diacyclops nanus and Acanthocyclops vernalis were found in small abundance and only in few lakes. The highest abundances of SDC (density and biomass) were found in sediments of thermally stratified mesotrophic lakes with intermediate wind-mixing index (Ko) and low potential for meromixis (Pm). Strong positive correlations were found between SDC and meiobenthos abundances in all groups of lakes. High biomass of Chaoborus larvae or presence of large populations of fish negatively affected SDC abundances in meiobenthos. Morphometric features, wind-mixing and thermal stratification, as well as the abundance of Chaoborus and fish predators are the key factors governing species diversity and abundance of summer diapausing cyclopoids in boreal lakes.


Cyclopoid copepods Summer diapausing patterns Wind-mixing index Chaoborus and fish predators Boreal lakes 



This chapter is a contribution resulting from research collaborations between the Russian Academy of Sciences and the Ministry of Education of Quebec, Canada. Financial support for this first research on diapausing cyclopoid copepods in boreal lakes of Quebec was provided through grants from the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery) and the Fond de Recherche du Québec (FRQ – Regroupement stratégique GRIL: Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique) to Bernadette Pinel-Alloul and from the Russian Foundation for Basic Researches to Victor R. Alekseev. Victor R. Alekseev was awarded by two grants “Excellence in Science” from the Ministry of Education, Quebec, Montreal, in 1998 and 2000. This chapter was written with the partial support from RFBR (grant 17-04-00027). The study was partly supported by the Russian Academy of Science, topics 65.4 and 65.5. Our thanks go to Ginette Méthot and Pierre Marcoux for helpful assistance during field sampling, to Louise Pelletier for SEM photos of encysted diapausing cyclopoids, to Louise Cloutier for valuable assistance in meiobenthos taxa identification, to David Lévesque and El-Amine Mimouni for statistical analysis and figure preparation, and to Antonia Cattaneo and Gwyneth McMillan for helpful comments and English editing on a previous version of the manuscript.


  1. Alekseev VR (1991) Diapause in crustaceans: ecological and physiological aspects. Academia Publications “Nauka”, Moscow, 143 [In Russian]Google Scholar
  2. Alekseev VR (1998) Biochemical and physiological characteristics of crustaceans in diapause: the internal mechanism of reactivation. Archiv für Hydrobiologie 52:463–476Google Scholar
  3. Alekseev VR (2007) Chapter 3: Diapause in crustaceans: peculiarities of induction. In: Diapause in aquatic invertebrates. Monographiae Biologicae 84. Springer, pp 29–63Google Scholar
  4. Alekseev VR, Starobogatov YI (1996) Types of diapause in Crustacea: definitions, distribution, evolution. Hydrobiologia 320:15–26CrossRefGoogle Scholar
  5. Alekseev VR, Guissani G, Ravera O, Riccardi N (eds) (2004) Diapause in aquatic invertebrates. J Limnol 63(Suppl 1):97pGoogle Scholar
  6. Alekseev VR, De Stasio BT, Gilbert J (2007) Diapause in Aquatic Invertebrates. Monographiae Biologicae 84. Springer, p 257Google Scholar
  7. Anderson RS, Raasveldt LG (1974) Gammarus predation and the possible effects of Gammarus and Chaoborus feeding on the zooplankton composition in some small lakes and ponds in western Canada. Canadian Wildlife Service occasional paper no. 18Google Scholar
  8. Arnott SE, Vanni MJ (1993) Zooplankton assemblages in fishless bog lakes: influence of biotic and abiotic factors. Ecology 74:2361–2380CrossRefGoogle Scholar
  9. Balushkina EV, Winberg GG (1979) Relation between body mass and length in planktonic animals. In: Winberg GG (ed) General bases of research into water ecosystems – Obshchiye Osnovy Izucheniya Vodnykh Ekosistem. Nauka, Leningrad, pp 169–172Google Scholar
  10. Berger F (1971) Zur Morphometrie der Caranthia II, Special Issue 31:29–39Google Scholar
  11. Birge EA, Juday C (1908) A summer resting stage in development of Cyclops bicuspidatus Claus. Trans Wis Acad Sci Arts Lett 16:1–9Google Scholar
  12. Boers JJ, Carter JCH (1978) The life history of Cyclops scutifer Sars (Copepoda, Cyclopoida) in a small lake of the Matamek River System, Québec. Can J Zool 56:2603–2607CrossRefGoogle Scholar
  13. Boxshall GA, Defaye D (2008) Global diversity of copepods (Crustacea: Copepoda) in freshwater. Hydrobiologia 595:195–207CrossRefGoogle Scholar
  14. Brendonck L, De Meester L (2003) Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491:65–84CrossRefGoogle Scholar
  15. Brendonck L, De Meester L, Hairston N Jr (eds) (1998) Evolutionary and ecological aspects of crustacean diapause: proceedings of the Symposium “Diapause in the Crustacea – with Invited Contributions on Non-Crustacean Taxa” held in Gent, August 24–29, 1997. Archiv für Hydrobiologie, Special Issues: Advances in Limnology 52: 561pGoogle Scholar
  16. Charlton MN (1980) Hypolimnion oxygen consumption in lakes: discussion of productivity and morphometry effects. Can J Fish Aquat Sci 37:1531–1539CrossRefGoogle Scholar
  17. Dahms H-U (1995) Dormancy in the copepods – an overview. Hydrobiologia 306:199–211CrossRefGoogle Scholar
  18. Dussart BH, Defaye D (1985) Répertoire mondial des Copépodes Cyclopoïdes. Centre National de la Recherche Scientifique (CNRS), Bordeaux/Paris. 236 ppGoogle Scholar
  19. Elgmork K (1967) Ecological aspects of diapause in copepods. In: Proceedings of the Syrup. Crustacea. III. Marine Biological Association of India, symposium. series 2, pp 947–954Google Scholar
  20. Elgmork K (1973) Bottom resting stages of planktonic cyclopoid copepods in meromictic lakes. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 18:1474–1478Google Scholar
  21. Elgmork K (1980) Evolutionary aspects of diapause in freshwater copepods. In: Kerfoot WC (ed) Evolution and ecology of zooplankton communities. The University Press of New England, Hanover/London, pp 411–417Google Scholar
  22. Elgmork K (1981) Extraordinary prolongation on the life cycle in a freshwater planktonic copepod. Holarct Ecol 4:278–290Google Scholar
  23. Elgmork K (1996) Variation in torpidity of diapause in freshwater cyclopoid copepods. Hydrobiologia 320:63–70CrossRefGoogle Scholar
  24. Elgmork K (2004) Life cycles of the freshwater, planktonic copepod Cyclops scutifer Sars on a north-south gradient in North America. Hydrobiologia 529:37–48Google Scholar
  25. Elgmork K, Langeland A (1980) Cyclops scutifer Sars – one and two-year life cycles with diapause in the meromictic lake Blank vatn. Archiv für Hydrobiologie 88:178–201Google Scholar
  26. Elgmork K, Lie S (1998) Diapause in the life cycle of Cyclops scutifer (Copepoda) in a meromictic lake and the problem of termination by an internal clock. Archiv für Hydrobiol, Special Issue Advances in Limnology 52: 371–381Google Scholar
  27. Elgmork K, Nilssen JP (1978) Equivalence of copepod and insect diapause. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 20:2511–2517Google Scholar
  28. Elgmork K, Halvorsen G, Eie JA, Langeland A (1990) Coexistence with similar life cycles in two species of freshwater copepods (Crustacea). Hydrobiologia 208:187–199CrossRefGoogle Scholar
  29. Filion J-M, Chain P, Futter M (1993) Cantilevering vertical tow nets to reduce two-line induced zooplankton avoidance. J Plankton Res 15:581–587CrossRefGoogle Scholar
  30. Frisch D (2002) Dormancy, dispersal and the survival of cyclopoid copepods (Cyclopoida, Copepoda) in a lowland floodplain. Freshw Biol 47:1269–1281CrossRefGoogle Scholar
  31. Fryer G (1996) Diapause, a potent force in the evolution of freshwater crustaceans. Hydrobiologia 320:1–14CrossRefGoogle Scholar
  32. George DG (1973) Diapause in Cyclops vicinus. Oikos 24:136–142CrossRefGoogle Scholar
  33. Gliwicz ZM, Rowan MG (1984) Survival of Cyclops abyssorum tatricus (Copepoda, Crustacea) in alpine lakes stocked with planktivorous fish. Limnol Oceanogr 29:1290–1299CrossRefGoogle Scholar
  34. Gyllström M, Hansson L-A (2004) Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquat Sci 66:274–295CrossRefGoogle Scholar
  35. Hairston NG (1987) Diapause as a predator-avoidance adaptation: Chapter 18. In: Kerfoot WC, Sih A (eds) Predation: direct and indirect impacts on aquatic communities. University Press of New England, Hanover, pp 281–290Google Scholar
  36. Hairston NG Jr, Hansen A-M, Schaffner WR (2000) The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshw Biol 45:133–145CrossRefGoogle Scholar
  37. Hakala A (2004) Meromixis as a part of lake evolution- observations and a revised classification of true meromictic lakes in Finland. Boreal Environ Res 9:37–53Google Scholar
  38. Halvorsen G, Elgmork K (1976) Vertical distribution and seasonal cycle of Cyclops scutifer Sars (Crustacea, Copepoda) in two oligotrophic lakes in southern Norway. Nor J Zool 24:143–160Google Scholar
  39. Hanazato T, Yasuno M (1989) Zooplankton community structure driven by vertebrate and invertebrate predators. Oecologia 81:450–458CrossRefGoogle Scholar
  40. Hansen A-M (1996) Variable life history of a cyclopoid copepod: the role of food availability. Hydrobiologia 320:223–227CrossRefGoogle Scholar
  41. Hansen A-M, Hairston NG (1998) Food limitation in a wild cyclopoid copepod population: direct and indirect life history responses. Oecologia 115:320–330CrossRefGoogle Scholar
  42. Husson F, Josse J, Le S, Mazet J (2011) FactoMineR: Multivariate exploratory data analysis and data mining with R. R. package version 1.16Google Scholar
  43. Keller W, Conlon M (1994) Crustacean zooplankton communities and lake morphometry in Precambrian Shield lakes. Can J Fish Aquat Sci 51:2424–2434CrossRefGoogle Scholar
  44. Kerfoot WC, Sih A (1987) Predation: direct and indirect impacts on aquatic communities. University Press, HanoverGoogle Scholar
  45. Kobari T, Ban S (1998) Life cycles of two limnetic cyclopoid copepods, Cyclops vicinus and Thermocyclops crassus, in two different habitats. J Plankton Res 20:1073–1086CrossRefGoogle Scholar
  46. Krylov PI, Alekseev VR, Frenkel OA (1996) Feeding and digestive activity of cyclopoid copepods in active diapause. Hydrobiologia 320:71–79CrossRefGoogle Scholar
  47. Le Jeune A-H, Bourdiol F, Aldamman L, Perron T, Amyot M, Pinel-Alloul B (2012) Factors affecting methylmercury biomagnification by a widespread aquatic invertebrate predator, the phantom midge larvae Chaoborus. Environ Pollut 165:100–108CrossRefGoogle Scholar
  48. Legendre P, Legendre L (2012) Numerical ecology. Elsevier Science, AmsterdamGoogle Scholar
  49. Maier G (1994) Patterns of life history among cyclopoid copepods of Central Europe. Freshw Biol 31:77–86CrossRefGoogle Scholar
  50. Masson S, Pinel-Alloul B (1998) Spatial distribution of zooplankton biomass size fractions in a bog lake: abiotic and (or) biotic regulation. Can J Zool 76:805–823CrossRefGoogle Scholar
  51. Masson S, Pinel-Alloul B, Dutilleul P (2004) Spatial heterogeneity of zooplankton biomass and size structure in southern Québec lakes: variation among lakes and within lake among epi-, meta- and hypolimnion strata. J Plankton Res 26:1441–1458CrossRefGoogle Scholar
  52. Medland VL, Taylor BE (2001) Strategies of emergence from diapause for cyclopoid copepods in a temporary pond. Archiv für Hydrobiol 150:329–349CrossRefGoogle Scholar
  53. Naess T, Nilssen JP (1991) Diapausing fertilized adults: A new pattern of copepod life cycle. Oecologia 86:368–371CrossRefGoogle Scholar
  54. Naess T, Nilssen JP, Demmo R (1993) Individual lake characteristics modify the life cycle and diapause habitat of two neighbouring populations of the cyclopoid copepod Thermocyclops oithonoides. Can J Zool 71:1663–1672CrossRefGoogle Scholar
  55. Nilssen J, Elgmork K (1977) Cyclops abyssorum – life cycle dynamics and habitat selection. Memorie dell Istituto Italiano di Idrobiologia 34:197–238Google Scholar
  56. Nürnberg GK (1988) A simple method for predicting the date of fall turnover in thermally stratified lakes. Limnol Oceanogr 32:1160–1164CrossRefGoogle Scholar
  57. Nürnberg GK (1995) Quantifying anoxia in lakes. Limnol Oceanogr 40:1100–1111CrossRefGoogle Scholar
  58. Paquette M, Pinel-Alloul B (1982) Cycles de développement de Skistodiaptomus oregonensis, Tropocyclops prasinus et Cyclops scutifer dans la zone limnétique du lac Cromwell, Saint-Hippolyte, Québec. Can J Zool 60:139–151CrossRefGoogle Scholar
  59. Pinel-Alloul B (1995a) Chapitre 18: Les invertébrés prédateurs du zooplancton. In: Pourriot R, Meybeck M (eds) Limnologie Générale. Collection d’écologie 25. Masson, Paris, pp 541–564Google Scholar
  60. Pinel-Alloul B (1995b) Chapitre 21: Impacts des prédateurs invertébrés sur les communautés aquatiques. In: Pourriot R, Meybeck M (eds) Limnologie Générale. Collection d’écologie 25. Masson, Paris, pp 628–647Google Scholar
  61. Pinto-Coelho R, Pinel-Alloul B, Méthot G, Havens KE (2005) Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: variation with trophic status. Can J Fish Aquat Sci 62:348–361CrossRefGoogle Scholar
  62. Prepas E (1978) Sugar frosted Daphnia: an improved fixation technique for Cladocera. Limnol Oceanogr 23:557–559CrossRefGoogle Scholar
  63. Radzikowski J (2013) Resistance of dormant stages of planktonic invertebrates to adverse environmental conditions. J Plankton Res 35:707–723CrossRefGoogle Scholar
  64. Reckhow KH (1977) Phosphorus model for lake management. PhD dissertation. Harvard UniversityGoogle Scholar
  65. Rivier IC (1996) Ecology of diapausing copepodids of Cyclops kolensis Lill. in reservoirs of the Upper Volga. Hydrobiologia 320:235–241CrossRefGoogle Scholar
  66. Santer B, Boldt E (1998) The seasonal patterns of lipids in the life cycle of the summer-diapausing freshwater copepod Cyclops kolensis (Lilljeborg). Archiv für Hydrobiol, Special Issues Advanced Limnology 52: 477–492Google Scholar
  67. Santer B, Hansen A-M (2006) Diapause of Cyclops vicinus (Uljanin) in Lake Søbygård: indication of a risk-spreading strategy. Hydrobiologia 560:217–226CrossRefGoogle Scholar
  68. Santer B, Lampert W (1995) Summer diapause in cyclopoid copepods – adaptive response to a food bottleneck. J Anim Ecol 64:600–613CrossRefGoogle Scholar
  69. Seebens H, Einsle U, Straile D (2009) Copepod life cycle adaptations and success in response to phytoplankton spring bloom phenology. Glob Chang Biol 6:1394–1404CrossRefGoogle Scholar
  70. Szlauer L (1963) The resting stages of Cyclopidae in Stary Dwór Lake. Polka Archiv für Hydrobiologie 11:385–394Google Scholar
  71. Watson NHF, Smallman BN (1971) The role of photoperiod and temperature in the induction and termination of an arrested development in two species of freshwater cyclopoid copepods. Can J Zool 49:855–862CrossRefGoogle Scholar
  72. Williams-Howze J (1997) Dormancy in the free-living copepod orders Cyclopoida, Calanoida, and Harpacticoida. Oceanogr Mar Biol Annu Rev 35:257–321Google Scholar
  73. Wyngaard GA (1988) Geographical variation in dormancy in a copepod: evidence from population crosses. Hydrobiologia 167/168:367–374CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.GRIL, Département de sciences biologiquesUniversité de MontréalMontréalCanada
  2. 2.Zoological Institute of Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations