Computational Modeling and Simulation of Surface Waterflood in Mountainous Urban Watersheds with the MOHID Platform: Case Study Nova Friburgo, Brazil

  • Wagner R. Telles
  • Diego N. BrandãoEmail author
  • Jader LugonJr.
  • Pedro P. G. W. Rodrigues
  • Antônio J. Silva Neto


Different countries in Latin America (LA) have suffered severely in recent years with hydrological disasters. The Emergency Events Database (EM-DAT), created by the World Health Organization (WHO), shows that in LA, only, more than 26 million people have been affected by these disasters, with a total death toll above six thousand in the time period from 2007 until 2016. Hydrological disasters are defined as hazards caused by both freshwater and saltwater abnormal behavior. In the present work, we are particularly interested in hydrological disasters caused by waterflood. The use of the MOHID (Modelagem Hidrodinâmica—Hydrological Modeling) computational platform is presented for the simulation the models of water flow and runoff in mountainous urban watersheds. The mathematical model based on partial differential equations used to represent the physical phenomena of interest is described, and the importance of computational modeling and simulation as auxiliary tools for disaster risk reduction is discussed. Simulations results are presented for a real case study with data from the Bengalas River watershed, in Nova Friburgo region, a city located on the mountains of Rio de Janeiro state, Brazil. In 2011 this geographical area went through a major natural disaster caused by heavy rainfall.



The authors acknowledge the financial support provided by FAPERJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (Rio de Janeiro Research Support Foundation, in Brazil), CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council for Scientific and Technological Development, in Brazil), and CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Coordination for Enhancement of Higher Education Personnel, Brazil).


  1. 1.
    Tingsanchali, T.: Urban flood disaster management. Proc. Eng. 32, 25–37 (2012)CrossRefGoogle Scholar
  2. 2.
    Wang, Y., Chen, A.S., Fu, G., Djordjević, S., Zhang, C., Savić, D.A.: An integrated framework for high-resolution urban flood modelling considering multiple information sources and urban features. Environ. Model. Softw. 107, 85–95 (2018)CrossRefGoogle Scholar
  3. 3.
    CRED, Centre for Research on the Epidemiology of Disasters: The International Disaster Database EM-DAT (2018).
  4. 4.
    Zhou, Q., Leng, G., Huang, M.: Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations. Hydrol. Earth Syst. Sci. 22, 305–316 (2018)CrossRefGoogle Scholar
  5. 5.
    Sanders, B.F.: Hydrodynamic modeling of urban flood flows and disaster risk reduction. In: Oxford Research Encyclopedia of Natural Hazard Science (2017) refore-9780199389407-e-127?print=pdf
  6. 6.
    Ashley, R.M., Balmforth, D.J., Saul, A.J., Blanskby, J.D.: Flooding in the future predicting climate change, risks and responses in urban areas. Water Sci. Technol. 52, 265–273 (2005)CrossRefGoogle Scholar
  7. 7.
    Larsen, A.N., Gregersen, I.B., Christensen, O.B., Linde, J.J., Mikkelsen, P.S.: Potential future increase in extreme one-hour precipitation events over Europe due to climate change. Water Sci. Technol., 60, 2205–2216 (2009)CrossRefGoogle Scholar
  8. 8.
    Willems, P.: Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle. Belgium. J. Hydrol. 496, 166–177 (2013)CrossRefGoogle Scholar
  9. 9.
    Alfieri, L., Feyen, L., Di Baldassarre, G.: Increasing flood risk under climate change: a pan-European assessment of the benefits of four adaptation strategies. Clim. Chang. 136, 507–521 (2016)CrossRefGoogle Scholar
  10. 10.
    Arnbjerg-Nielsen, K., Leonardsen, L., Madsen, H.: Evaluating adaptation options for urban flooding based on new highend emission scenario regional climate model simulations. Clim. Res. 64, 73–84 (2015)CrossRefGoogle Scholar
  11. 11.
    Moore, T.L., Gulliver, J.S., Stack, L., Simpson, M.H.: Stormwater management and climate change: vulnerability and capacity for adaptation in urban and suburban contexts. Clim. Change 138, 491–504 (2016)CrossRefGoogle Scholar
  12. 12.
    Poussin, J.K., Bubeck, P., Aerts, J.C.J.H., Ward, P.J.: Potential of semi-structural and non-structural adaptation strategies to reduce future flood risk: case study for the Meuse. Nat. Hazards Earth Syst. Sci. 12, 3455–3471 (2012)CrossRefGoogle Scholar
  13. 13.
    Olsson, J., Berggren, K., Olofsson, M., Viklander, M.: Applying climate model precipitation scenarios for urban hydrological assessment: a case study in Kalmar City, Sweden. Atmos. Res. 92, 364–375 (2009)CrossRefGoogle Scholar
  14. 14.
    Willems, P., Arnbjerg-Nielsen, K., Olsson, J., Nguyen, V.T.V.: Climate change impact assessment on urban rainfall extremes and urban drainage: methods and shortcomings. Atmos. Res. 103, 106–118 (2012)CrossRefGoogle Scholar
  15. 15.
    Zahmatkesh, Z., Karamouz, M., Goharian, E., Burian, S.J.: Analysis of the effects of climate change on urban storm water runoff using statistically downscaled precipitation data and a change factor approach. J. Hydrol. Eng. 20, 1 (2015)CrossRefGoogle Scholar
  16. 16.
    Santos, L.L.: Hydrological models: concepts and apply (in Portuguese). Braz. J. Phys. Geogr. 2, 1–19 (2009)Google Scholar
  17. 17.
    Steinstrasser, C.E.: Lax Diffusive Method applied to Saint Venant Equations (in Portuguese). Dissertation. Paraná Federal University, Curitiba (2005)Google Scholar
  18. 18.
    Liggett, J.A.: Basic equations of unsteady flow. In: Mahmood, K., Yevjevich, V. (eds.) Unsteady Flow in Open Channels. Water Resources Publications, Fort Collins (1975)Google Scholar
  19. 19.
    Ferreira, D.M., Fernandes, C.V.S., Gomes, J.: Verification of Saint-Venant equations solution based on the lax diffusive method for flow routing in natural channels. RBRH 22 (2017). Google Scholar
  20. 20.
    Szymkiewicz, R.: Numerical Modeling in Open Channel Hydraulics. Springer, New York (2010)CrossRefGoogle Scholar
  21. 21.
    Fan, F.M., Pontes, P.R.M., Paiva, R.C.D., Collischonn, W. Avaliação de um método de propagação de cheias em rios com aproximação inercial das equações de Saint-Venant. Rev. Bras. Recur. Hidr. 19, 137–147 (2014)Google Scholar
  22. 22.
    Henderson, F.M.: Open Channel Flow. MacMillan, New York (1966)Google Scholar
  23. 23.
    Porto, R.M.: Basic of Hydrology (in Portuguese). EESC-USP, São Paulo (1999)Google Scholar
  24. 24.
    Trancoso A.R., Braunschweig, F., Leitão, P.C., Obermann, M, Neves, R.: An advanced modelling tool for simulating complex river systems. Sci. Total Environ. 407, 3004–3016 (2009)CrossRefGoogle Scholar
  25. 25.
    Maretec: MOHID: DescrDescrição do MOHID. Essentia Editora, Campos dos Goytacazes (2012)Google Scholar
  26. 26.
    Neves, R.J.J.: Étude Experimentale et Modélisation des Circulations Trasitoire et Résiduelle Dans Lestuairedu Sado. Universidade de Liège, Liège (1985)Google Scholar
  27. 27.
    Precioso, C.H.O., Kalas, F.A., Rodrigues, P.P.G.W., Lugon Jr., J.: Evaluation of environmental parameters variability in an urban lagoon (Campos dos Goytacazes/RJ) using the MOHID System (in Portuguese). Boletim do Observatório Ambiental Alberto Ribeiro Lamego 4, 185–204 (2010)CrossRefGoogle Scholar
  28. 28.
    Souza, M.P.G.: Simulação da Dispersão de Óleo na Baía do Espírito Santo Usando o Modelo Numérico MOHID-2D. Universidade Federal do Espírito Santo, Vitória (2010)Google Scholar
  29. 29.
    Braunschweig, F., Fernandez, L.: MOHID: User Manual (in Portuguese). Essentia Editora, Campos dos Goytacazes (2010)Google Scholar
  30. 30.
    Pessanha, C.M.D., Lugon Jr., J., Ferreira, M.I.P., Souza, P.R.N., Hora, H.M.C.: Uso de modelagem computacional aplicada a gestão sanitário-ambiental: uma proposta de adaptação da plataforma MOHID water para corpos lênticos aplicada a lagoa Imboacica, Macaé-RJ. Boletim do Observatório Ambiental Alberto Ribeiro Lamego 5, 45–70 (2011)CrossRefGoogle Scholar
  31. 31.
    Telles, W.R.: Prediction of Hydraulic Behaviour of a river based on the estimated coefficients that controls its flow. Case Study: Bengalas River, Nova Friburgo-RJ (in Portuguese). Ph.D. thesis. Universidade do Estado do Rio Janeiro, Nova Friburgo (2014)Google Scholar
  32. 32.
    Telles, W.R., Silva Neto, A.J., Rodrigues, P.P.G.W.: Avaliação do sistema de modelagem MOHID na delimitação de bacias hidrográficas. Anais do Congresso de Matemática Aplicada e Computacional. Natal 589–592 (2012).
  33. 33.
    Telles, W.R., Rodrigues, P.P.G.W., Silva Neto, A.J.: Calibração automática de um simulador aplicado a um rio de montanha empregando dados experimentais de precipitação e nível—estudo de caso: Córrego D-Antas, RJ. Rev. Bras. Recur. Hidr. 21, 143–151 (2016)Google Scholar
  34. 34.
    Telles, W.R., Rodrigues, P.P.G.W., Silva Neto, A.J.: Calibração automática da plataforma MOHID empregando um método estocástico de otimização e dados reais de um evento climático extremo em Nova Friburgo-RJ: Parte 1—preparação do modelo digital do terreno e aquisição dos dados experimentais de precipitação e nível. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 33, 164–170 (2017)CrossRefGoogle Scholar
  35. 35.
    Fernandes, R.: Modelação Operacional no Estuário do Tejo. Dissertation. Instituto Superior Técnico de Lisboa, Lisboa (2005)Google Scholar
  36. 36.
    Correia, E.F.G.: Hydrologic Modeling of Bengalas Basin, Nova Friburgo—RJ, using the Geotechnology Potential for the Definition of Areas with Flood Risk (in Portuguese). Dissertation. Universidade do Estado do Rio Janeiro, Rio de Janeiro (2011)Google Scholar
  37. 37.
    FCTH, Fundação Centro Tecnológico de Hidráulica: Plano de Águas Pluviais de Nova Friburgo—PAPNF. FCTH, São Paulo (2007)Google Scholar
  38. 38.
    Telles, W.R., Rodrigues, P.P.G.W., Silva Neto, A.J.: Calibração automática da plataforma MOHID empregando um método estocástico de otimização e dados reais de um evento climático extremo em Nova Friburgo—RJ: Parte 2—análise de sensibilidadee estimativa de parâmetros hidrológicos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 33, 204–211 (2017)CrossRefGoogle Scholar
  39. 39.
    Valeriano, M.M., Albuquerque, P.C.G.: Topodata: processamento dos dados SRTM. INPE, São José dos Campos (2010)Google Scholar
  40. 40.
    Valeriano, M.M.: Dados topográficos. In: Florenzo, T.G. (eds.) Geomorfologia: Conceitos e Tecnologias Atuais, pp. 72–103. Oficina de Textos, São Paulo (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wagner R. Telles
    • 1
  • Diego N. Brandão
    • 2
    Email author
  • Jader LugonJr.
    • 3
  • Pedro P. G. W. Rodrigues
    • 4
  • Antônio J. Silva Neto
    • 4
  1. 1.Universidade Federal FluminenseSanto Antônio de PáduaRio de JaneiroBrazil
  2. 2.Centro Federal de Educação Tecnologica Celso Suckow da FonsecaRio de JaneiroRio de JaneiroBrazil
  3. 3.Instituto Federal FluminenseMacaéBrazil
  4. 4.Instituto PolitécnicoUniversidade do Estado do Rio de Janeiro UERJNova FriburgoBrazil

Personalised recommendations