# Modeling Social and Geopolitical Disasters as Extreme Events: A Case Study Considering the Complex Dynamics of International Armed Conflicts

## Abstract

Just as various sorts of extreme climatic events are identified in Earth’s *atmosphere*, so are some types of extreme events in our *sociosphere*. A geopolitical conflict that can result in a social disaster is an example. In this chapter, the turbulent-like dynamics of international armed conflicts are treated within the scope of complex *multi-agent systems* explicitly considering the properties of *multiplicative non-homogeneous cascade* where *endogeny* and *exogeny* are key points in the mathematical model of the phenomenon. As a main result, this study introduces a cellular automata prototype that allows characterizing regimes of extreme armed conflicts such as the 9∕11 terrorist attacks and the great world wars.

## Notes

### Acknowledgements

The authors are grateful for the financial support of the following agencies: CNPq, CAPES, and FAPESP.

## References

- 1.
- 2.
- 3.Albeverio, S., Jentsch, V., Kantz, H. (eds.): Extreme Events in Nature and Society. The Frontiers Collection, Springer (2006). https://doi.org/10.1007/3-540-28611-X Google Scholar
- 4.Arneodo, A., Bacry, E., Muzy, J.F.: Phys. A
**213**(1–2), 232–275 (1995)CrossRefGoogle Scholar - 5.Arneodo, A.E., Baudet, C., Belin, F., Benzi, R., Castaing, B., Chabaud, B., Dubrulle, B., et al.: Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity. EPL (Europhys. Lett.)
**34**(6), 411 (1996)Google Scholar - 6.Bailey, Kenneth D.: Social Entropy Theory (term: “Prigogine entropy”), p. 72. State University of New York Press, New York (1990)Google Scholar
- 7.Bak, P.: How Nature Works. Springer, New York (1996)CrossRefGoogle Scholar
- 8.Ben Taieb, S., Sorjamaa, A., Bontempi. G.: Multiple-output modeling for multi-step-ahead time series forecasting. Neurocomputing
**73**(10), 1950–1957 (2010)Google Scholar - 9.Boccara, N.: Modeling Complex Systems. Springer, New York (2010)CrossRefGoogle Scholar
- 10.Bohr, T., Jensen, M.H., Paladin, G., Vulpiani, A.: Dynamical Systems Approach to Turbulence. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
- 11.Bolzan, M.J.A., Ramos, F.M., Sa, L.D.A., Neto, C.R., Rosa, R.R.: Analysis of fine-scale canopy turbulence within and above an Amazon forest using Tsallis generalized thermostatistics. JGR
**107-D20**, 8063 (2002)Google Scholar - 12.Bolzan, J.M., Rosa, R.R., Sahay,Y.: Multifractal analysis of low-latitude geomagnetic fluctuations. Ann. Geophys.
**27**(2) (Feb 2009)Google Scholar - 13.Brownlee, J.: Time series prediction with LSTM recurrent neural networks with Keras. In: Deep learning with python, MLM (2016)Google Scholar
- 14.Buckley, W.: Sociology and the Modern Systems Theory. Prentice-Hall, Upper Saddle River (1967)Google Scholar
- 15.Couzin, I.D., Krause, J.: The social organization of fish schools. Adv. Ethology
**36**, 64 (2001)Google Scholar - 16.Davis, A., Marshak, A., Cahalan, R., Wiscombe, W.: The landsat scale break in stratocumulus as a three-dimensional radiative transfer effect: implications for cloud remote sensing. J. Atmos. Sci.
**54**(2) (1997)Google Scholar - 17.Dupuy, K., Gates, S., Nygard, H.M., Rudolfsen, I., Rustad, S.A., Strand, H., Urda, H.: Trends in Armed Conflict, 1946–2016. PRIO Conflict Trends (June 2017)Google Scholar
- 18.Enescu, B., Ito, K., Struzik, Z.: Geophys. J. Int.
**164**(1), 63–74 (2006)CrossRefGoogle Scholar - 19.Epstein, J.M., Axtell, R.: Growing artificial societies: social science from the bottom up. The Brookings Institution/MIT Press, Cambridge (1996)CrossRefGoogle Scholar
- 20.Farge, M.: Annu. Rev. Fluid Mech.
**24**, 395–457 (1992)CrossRefGoogle Scholar - 21.Frisch, U.: Cambridge University Press, New York (1995)Google Scholar
- 22.Fuchs, C.: Internet and Society: Social Theory in the Information Age. Routledge, New York (2008)Google Scholar
- 23.Gardiner, C.W.: Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences, 3rd edn. Springer Series in Synergetics, Berlin (2004)CrossRefGoogle Scholar
- 24.Gleditsch, N.P., Wallensteen, P., Eriksson, M., Sollenberg, M., Strand, H.: Armed conflict 1946–2001: a new dataset. J. Peace Res.
**39**(5), 615–637 (2002)CrossRefGoogle Scholar - 25.Global Terrorism Index: Institute for Economics & Peace, pp. 94–95 (November 2016). ISBN 978-0-9942456-4-9Google Scholar
- 26.Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.I.: Phys. Rev. A
**33**, 1141 (1986)MathSciNetCrossRefGoogle Scholar - 27.Hersh, M.: Mathematical Modelling for Sustainable Development. Springer, New York (2006)Google Scholar
- 28.Hughes, R.L.: The flow of human crowds. Annu. Rev. Fluid Mech.
**35**, 169–182 (2003)MathSciNetCrossRefGoogle Scholar - 29.Jiang, P., Chen, C., Liu, X.: Time series prediction for evolutions of complex systems: a deep learning approach. In: Proceedings of 2016 IEEE International Conference on Control and Robotics Engineering (ICCRE). https://doi.org/10.1109/ICCRE.2016.7476150
- 30.Kari, J.: Theory of cellular automata: a survey. Theor. Comput. Sci.
**334**(1–3), 3–33 (2005)MathSciNetCrossRefGoogle Scholar - 31.Keylock, C.J.: Multifractal surrogate-data generation algorithm that preserves pointwise Hölder regularity structure, with initial applications to turbulence. Phys. Rev. E
**95**(3), 032123 (2017)CrossRefGoogle Scholar - 32.Konar, A., Bhattacharya, D.: Time-Series Prediction and Applications: A Machine Intelligence Approach. Springer, Berlin (2017)CrossRefGoogle Scholar
- 33.Majda, A.: Introduction to Turbulent Dynamical Systems in Complex Systems. Springer, New York (2016)CrossRefGoogle Scholar
- 34.Mallat, S.: IEEE Trans. Pattern Anal. Mach. Intell.
**11**, 674–693 (1989)CrossRefGoogle Scholar - 35.Margalef, R., Gutiérrez, E.: How to introduce connectance in the frame of an expression for diversity. Am. Nat.
**5**, 601–607 (1983)CrossRefGoogle Scholar - 36.Marwick, A.: War and Social Change in the Twentieth Century: A Comparative Study of Britain. Macmillan Student Editions. Macmillan, London (1974)Google Scholar
- 37.Meneveau, C., Sreenivasan, K.R.: Simple Multifractal Cascade Model for Fully Developed Turbulence. Phys. Rev. Lett.
**59**, 1424–1427 (1987)CrossRefGoogle Scholar - 38.Meyers, R.A. (Ed.): Encyclopedia of Complexity and Systems Science. Springer, New York (2009)zbMATHGoogle Scholar
- 39.Miller, A.L.: China an emerging superpower? Stanf. J. Int. Rel.
**6**(1) (2005)Google Scholar - 40.Milsum, J.H.: The technosphere, the biosphere, the sociosphere: their systems modeling and optimization. IEEE Spectr.
**5**(6) (1968). https://doi.org/10.1109/MSPEC.1968.5214690. - 41.Muzy, J.F., Bacry, E., Arneodo, A.: Phys. Rev. Lett.
**67**(25), 3515–3518 (1991)CrossRefGoogle Scholar - 42.Ohnishi, T.J.: A mathematical method for the turbulent behavior of crowds using agent particles. J. Phys. Conf. Ser.
**738**, 012091 (2016)CrossRefGoogle Scholar - 43.Oswiecimka, P., Kwapien, J., Drozdz, S.: Phys. Rev. E
**74**, 016103 (2006)CrossRefGoogle Scholar - 44.Page, S.E.: Diversity and Complexity. Princeton University Press, Princeton (2011)zbMATHGoogle Scholar
- 45.Pei, S., Morone, F., Makse, H.A.: Theories for influencer in complex networks. In: Spreading Dynamics in Social Systems, Lehmann, S., Ahn, Y.-Y. (Eds.). Springer, New York (2017)Google Scholar
- 46.Prigogine, I.; Kondepudi, D., Modern Thermodynamics. Wiley, New York (1998)zbMATHGoogle Scholar
- 47.Ramos, F.M., Rosa, R.R., Neto, C.R., Bolzan, M.J.A., Sá, L.D.A.: Nonextensive thermostatistics description of intermittency in turbulence and financial markets. Nonlinear Anal. Theory Methods Appl.
**47**(5), 3521–3530 (2001)MathSciNetCrossRefGoogle Scholar - 48.Ramos, F.M., Bolzan, M.J.A., Sá, L.D.A., Rosa, R.R.: Atmospheric turbulence within and above an Amazon forest. Physica D Nonlinear Phenom.
**193**(1–4), 278–291 (15 June 2004)Google Scholar - 49.Ramos, F.M., Lima, I.B.T., Rosa, R.R., Mazzi, E.A., Carvalho, J.C., Rasera, M.F.F.L., Ometto, J.P.H.B., Assireu, A.T., Stech. J.L.: Extreme event dynamics in methane ebullition fluxes from tropical reservoirs. Geophys. Res. Lett.
**33**(21) (2006)Google Scholar - 50.Rieucau, G., Holmin, A.J., Castillo, J.C., Couzin, I.D., Handegard, N.-O.: School-level structural and dynamic adjustments to perceived risk promote efficient information transfer and collective evasion in herring. Anim. Behav.
**117**, 69–78 (2016)CrossRefGoogle Scholar - 51.Rodrigues Neto, C., Zanandrea, A., Ramos, F.M., Rosa, R.R., Bolzan, M.J.A., Sá, L.D.A.: Phys. A
**295**(1–2), 215–218 (2001)CrossRefGoogle Scholar - 52.Schertzer, D., Lovejoy, S.: Multifractal Generation of Self-Organized Criticality. In: Novak, M.M. (ed.) Fractals in the Natural and Applied Sciences, pp. 325–339. North-Holland, Elsevier (1994)Google Scholar
- 53.Sethna, J.P.: Statistical Mechanics: Entropy, Order Parameters, and Complexity. Oxford-Clarendom Press, Oxford (2017)zbMATHGoogle Scholar
- 54.Smith, M., Zeigler, M.S.: Terrorism before and after 9/11—a more dangerous world? Res. Polit.
**4**(4), 1–8 (2017)Google Scholar - 55.Sornette, D., Deschâtres, F., Gilbert, T., Ageon, Y.: Endogenous versus exogenous shocks in complex networks: an empirical test using book sale rankings. Phys. Rev. Lett.
**93**, 228701 (2004)CrossRefGoogle Scholar - 56.Struzik, Z.R.: Fractals
**8**, 163–179 (2000)CrossRefGoogle Scholar - 57.Themnér, L.: The UCDP/PRIO Armed Conflict Dataset Codebook, Version 4- 2016 (2016)Google Scholar
- 58.Turiel, A., Perez-Vicente, C.J., Grazzini, J.: J. Comput. Phys.
**216**, 362–390 (2006)MathSciNetCrossRefGoogle Scholar - 59.University of Maryland’s Global Terrorism Database (GTD). https://www.start.umd.edu/gtd/
- 60.von Bertalanffy, K.L.: General Theory of Systems. Penguin University Books, Penguin (1978)Google Scholar
- 61.Weisbuch, G.: Complex Systems Dynamics. Santa Fé Institute. Westview Press, Boulder (1994)Google Scholar
- 62.WSJ Graphics: Wall Street J.
**Nov. 14**(2015)Google Scholar - 63.Xiong, G., Zhang, S., Yang, X.: Phys. A
**391**, 6347–6361 (2012)MathSciNetCrossRefGoogle Scholar - 64.Yam, Y.B.: Dynamics of Complex Systems. Addison-Wesley, Boston (1992)Google Scholar
- 65.Zivieri, R., Pacini, N., Finocchio, G., Carpentieri, M.: Rate of entropy model for irreversible processes in living systems. Sci. Rep.
**7**. Article number: 9134 (2017). https://doi.org/10.1038/s41598-017-09530-5