Metastability: A Brief Introduction Through Three Examples

  • Stella Brassesco
  • Maria Eulalia VaresEmail author
Part of the Association for Women in Mathematics Series book series (AWMS, volume 20)


Metastability is a very frequent phenomenon in nature. It also finds many applications in science and engineering. A noticeable basic feature is the presence of “quasi-equilibria states” and relatively sudden transitions between them. The goal of this short expository note is to discuss some aspects of the stochastic modeling of metastability, usually done through the consideration of special stochastic processes. This includes a “pathwise approach” developed since the 1980s. Thought as an invitation to the readership, three examples are quickly reviewed, starting with a class of reaction-diffusion equations subject to a small stochastic noise, for which the theory of large deviations has been a very useful tool, and further precision achieved through the help of potential theoretical techniques. We present then brief summaries of results on the Harris contact process on suitable finite graphs, and a quick discussion of stochastic dynamics for the well-known Ising model. The first can be thought as an oversimplified model for the propagation of an infection, and the second has been used in the context of magnetization. From a probabilistic analysis and technical viewpoint, the Ising model enjoys time-reversibility, which provides useful tools, while the contact process is non-reversible.



M. E. Vares acknowledges support of CNPq (grant 305075/2016-0) and FAPERJ (grant E-26/203.048/2016).


  1. 1.
    S. M. Allen and J. W. Cahn: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica 27, 1085–1095 (1979)CrossRefGoogle Scholar
  2. 2.
    J. Barrera, O. Bertoncini, R. Fernández: Abrupt convergence and escape behavior for birth and death chains. J. Stat. Phys. 137 (4), 595–623 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    F. Barret: Sharp asymptotics of metastable transition times for one dimensional spdes. Ann. Inst. H. Poincaré Probab. Statist. 51 (1), 129–166 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    D. J. Barsky, G. Grimmett, C. M. Newman: Percolation in half-spaces: equality of critical probabilities and continuity of the percolation probability. Probab. Theory Relat. Fields 90 (1), 111–148 (1991)zbMATHCrossRefGoogle Scholar
  5. 5.
    N. Berger, C. Borgs, J. T. Chayes, A. Saberi: Asymptotic behavior and distributional limits of preferential attachment graphs. Ann. Probab. 42, 1–40 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    C. Bezuidenhout, G. Grimmett: The critical contact process dies out. Ann. Probab.18 (4), 1462–1482 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    A. Bianchi, A. Gaudillière: Metastable states, quasi-stationary distributions and soft measures. Stochastic Process. Appl. 126 (6), 1622–1680 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    A. Bianchi, A. Gaudillière, P. Milanesi: On soft capacities, quasi-stationary distributions and the pathwise approach to metastability. arXiv:1807.11233Google Scholar
  9. 9.
    A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein: Metastability in reversible diffusion processes I: Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. 6, 399–424 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    A. Bovier, F. den Hollander: Metastability: A potential theoretic approach. Springer (2015)Google Scholar
  11. 11.
    S. Brassesco: Some results on small random perturbations of an infinite dimensional dynamical system. Stoch. Proc. Appl. 38, 33–53 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    S. Brassesco, E. Presutti, V. Sidoravicius, M. E. Vares: Ergodicity of a Glauber+Kawasaki process with metastable states. Markov Proc. Relat. Fields 6 (2), 181–203 (2000)MathSciNetzbMATHGoogle Scholar
  13. 13.
    V. H. Can. Metastability for the contact process on the preferential attachment graph. Internet Math. 45pp. (2017)Google Scholar
  14. 14.
    N. Chafee and E. F. Infante: Bifurcation and stability for a nonlinear parabolic partial differential equation. Bull. Am. Math. Soc.80, 49–52 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    S. Chatterjee, R. Durrett: Contact process on random graphs with degree power law distribution have critical value zero. Ann. Probab. 37, 2332–2356 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    J. W. Chen: The contact process on a finite system in higher dimensions, Chinese J. Contemp. Math. 15 13–20 (1994)MathSciNetGoogle Scholar
  17. 17.
    M. Cramston, T. Mountford, J.-C. Mourrat, D. Valesin: The contact process on finite homogeneous trees revisited. Alea 11 (1), 385–408 (2014)MathSciNetzbMATHGoogle Scholar
  18. 18.
    M. Cassandro, A. Galves, E. Olivieri, M. E. Vares: Metastable behaviour of stochastic dynamics: a pathwise approach. J. Stat. Phys. 35, 603–634 (1984)zbMATHCrossRefGoogle Scholar
  19. 19.
    A. De Masi, P. A. Ferrari, and J. L. Lebowitz: Reaction-diffusion equations for interacting particle systems. J. Stat. Phys. 44, 589–644 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    A. Debussche, M. Hoegele, and P. Imkeller: Asymptotic first exit times of the Chafee-Infante equation with small heavy-tailed Lévy noise. Electron. Commun. Probab. 16, 213–225 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    A. Debussche, M. Högele, and P. Imkeller: The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise, Lecture Notes in Mathematics 2085, Springer (2013)Google Scholar
  22. 22.
    R. Durrett: On the growth of one dimensional contact process. Ann. Probab. 8 (5), 890–907 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    R. Durrett: Random Graph Dyamics. Cambridge Univ. Press, Cambridge (2007)Google Scholar
  24. 24.
    R. Durrett, X-F. Liu: The contact process on a finite set. Ann. Probab. 16 (3), 1158–1173 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    R. Durrett, R. H. Schonmann: The contact process on a finite set II. Ann.Probab. 16 (4), 1570–1583 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    J. Farfan, C. Landim, K. Tsunoda: Static large deviations for a reaction-diffusion model. arXiv:1606.07227 (2016)Google Scholar
  27. 27.
    W. G. Faris and G. Jona-Lasinio: Large fluctuations for a nonlinear heat equation with noise. J. Phys. A 15, 3025–3055 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    M. I. Freidlin and A. D. Wentzell: Random Perturbations of Dynamical Systems. Grundlehren der mathematischen Wissenschaften. Springer, Berlin- Heidelberg (1998)Google Scholar
  29. 29.
    A. Galves, E. Olivieri, and M. E. Vares: Metastability for a class of dynamical systems subject to small random perturbations. Ann. Probab. 15, 1288–1305 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    A. Gaudillière, P. Milanesi, M. E. Vares. Asymptotic exponential law for the transition time to equilibrium of the metastable kinetic Ising model with vanishing magnetic field. arXiv:1809.07044Google Scholar
  31. 31.
    T. Harris: Contact interactions on a lattice. Ann. Probab. 2, 969–988 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    D. Henry: Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics 840, Berlin-Heidelberg-New York: Springer-Verlag., (1981)Google Scholar
  33. 33.
    A. Hinojosa: Exit time for a reaction diffusion model. Markov Processes and Related Filelds 10 (4), 705–744 (2005)MathSciNetzbMATHGoogle Scholar
  34. 34.
    M. Högele and I. Pavlyukevich: Metastability in a class of hyperbolic dynamical systems perturbed by heavy-tailed Lévy type noise. Stochastics and Dynamics 15(3) (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    H. A. Kramers: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7 (4), 284–304 (1940)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    D. A. Levin, M. Luczak, and Y. Peres: Glauber dynamics for the Mean-field Ising Model: cut-off, critical power law, and metastability. Probab. Theory Rel. Fields 146, 233–265 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    T. M. Liggett: Interacting Particle Systems. Springer, New York (1985)zbMATHCrossRefGoogle Scholar
  38. 38.
    T. M. Liggett: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999)zbMATHCrossRefGoogle Scholar
  39. 39.
    F. Martinelli, E. Olivieri, and E. Scoppola: Small random perturbations of finite and infinite-dimensional dynamical systems: Unpredictability of exit times. Journal of Statistical Physics 55, 477–504 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    T. S. Mountford: A metastable result for the finite multidimensional contact process. Can. Math. Bull. 36 (2), 216–226 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    T. S. Mountford: Existence of a constant for finite system extinction. J. Stat. Phys. 96 (5/6), 1331–1341 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    T. Mountford, J.-C. Mourrat, D. Valesin, Q. Yao: Exponential extinction time of the contact process on finite graphs. Stoch. Proc. Appl. 216, 1974–2013 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    T. Mountford, D. Valesin, Q. Yao: Metastable densities for the contact process on power law random graphs. Electron. J. Probab. 18, 1–36 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    J.-C. Mourrat, D. Valesin: Phase transition of the contact process on random regular graphs. Electron. J. Probab.21, 1–17 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    E. J. Neves, R. H. Schonmann: Critical droplets and metastability for a Glauber dynamics at very low temperatures. Commun. Math. Phys. 137, 209–230 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    E. J. Neves, R. H. Schonmann: Behaviour of droplets for a class of Glauber dynamics at very low temperatures. Probab. Theory Relat. Fields 91, 331–354 (1992)zbMATHCrossRefGoogle Scholar
  47. 47.
    E. Olivieri, M. E. Vares: Large deviations and metastability. Cambridge University Press (2005)Google Scholar
  48. 48.
    R. Pemantle: The contact process on trees. Ann. Probab. 20, 2089–2116 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    O. Penrose, J. L. Lebowitz: Rigorous treatment of metastable states in the van der Waals-Maxwell Theory. J. Stat. Phys. 3, 211–241 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    M. Salzano: The contact process on graphs. PhD thesis, UCLA, (2000). (Reprinted Publicações Matemáticas. IMPA, 2003.)Google Scholar
  51. 51.
    M. Salzano, R. Schonmann: A new proof that for the contact process on homogeneous trees local survival implies complete convergence. Ann. Probab. 26, 1251–1258 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    R. H. Schonmann: Metastability for the contact process. J. Stat. Phys. 41 (3/4), 445–484 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    R. H. Schonmann: The pattern of escape from metastability of a stochastic Ising model. Commun. Math. Phys. 147, 231–240 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    R. H. Schonmann: Theorems and conjectures on the droplet driven relaxation of stochastic Ising model. In Probability and Phase Transition, ed. G. Grimmett. NATO ASI Series. Dordrecht, Kluwer, 265–301 (1994)zbMATHCrossRefGoogle Scholar
  55. 55.
    R. H. Schonmann, S. Shlosman: Wulff droplets and the metastable relaxation of kinetic Ising models. Commun. Math. Phys.194 (2), 389–462 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    A. Simonis: Metastability of the d-dimensional contact process. J. Stat. Phys. 83 (5/6), 1225–1239 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    M. Stacey: The existence of an intermediate phase for the contact process on tress. Ann. Probab. 24, 1711–1726 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Y. Zhang: The complete convergence theorem of the contact process on trees. Ann. Probab. 24, 1408–1443 (1996)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Association for Women in Mathematics and the Author(s) 2019

Authors and Affiliations

  1. 1.Instituto Venezolano de Investigaciones CientíficasCaracasVenezuela
  2. 2.Instituto de MatemáticaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations