Advertisement

Systematics, Diversity and Ecology of the Genus Yarrowia and the Methanol-Assimilating Yeasts

  • Gábor PéterEmail author
  • Edina Szandra Nagy
  • Dénes Dlauchy
Chapter

Abstract

Yeasts have been exploited by humankind for millennia. Currently, numerous yeast species beyond Saccharomyces cerevisiae are utilised by the bioindustry, the so-called non-conventional yeasts. Among the non-conventional yeasts, Yarrowia lipolytica and some methanol-utilising yeast species occupy an important position. During the past one and half decade, Yarrowia has expanded from a monotypic genus including only Y. lipolytica to a genus containing 14 species. Similarly, the number of known methanol-utilising yeasts has increased dynamically. Currently, their number exceeds 90, and the majority of them are assigned to the genera Komagataella, Kuraishia, Ogataea, and some of them yet to Candida. Methanol-assimilating Candida species are related to the genus Ogataea.

The most important changes in the systematics of these important yeasts are summarised, and some aspects of their ecology and diversity are discussed as well. Diversity of these yeasts in a few habitats, including a newly recognised one, is briefly introduced. Selective enrichment-based isolation methods for recovering strains of these two exciting yeast groups are discussed as well.

Keywords

Biodiversity Ecology Methylotrophic yeasts Pichia pastoris Komagataella Kuraishia Ogataea Phylloplane Systematics Yarrowia lipolytica 

References

  1. Abunyewa AAO, Laing E, Hugo A, Viljoen BC (2000) The population change of yeasts in commercial salami. Food Microbiol 17(4):429–438.  https://doi.org/10.1006/fmic.1999.0333CrossRefGoogle Scholar
  2. Addis E, Fleet GH, Cox JM, Kolak D, Leung T (2001) The growth, properties and interactions of yeasts and bacteria associated with the maturation of Camembert and blueveined cheeses. Int J Food Microbiol 69(1–2):25–36.  https://doi.org/10.1016/S0168-1605(01)00569-4CrossRefPubMedGoogle Scholar
  3. Asthana H, Humphrey AE, Moritz V (1971) Growth of yeast on methanol as the sole carbon substrate. Biotechnol Bioeng 13(6):923–929.  https://doi.org/10.1002/bit.260130615CrossRefGoogle Scholar
  4. Bai M, Qing M, Guo Z, Zhang Y, Chen X, Bao Q, Zhang H, Sun T (2010) Occurrence and dominance of yeast species in naturally fermented milk from the Tibetan Plateau of China. Can J Microbiol 56(9):707–714.  https://doi.org/10.1139/W10-056CrossRefPubMedGoogle Scholar
  5. Barth G (ed) (2013) Yarrowia lipolytica. Biotechnological applications. Springer, BerlinGoogle Scholar
  6. Bigey F, Tuery K, Bougard D, Nicaud J, Moulin G (2003) Identification of a triacylglycerol lipase gene family in Candida deformans: molecular cloning and functional expression. Yeast 20(3):233–248.  https://doi.org/10.1002/yea.958CrossRefPubMedGoogle Scholar
  7. Bintsis T, Robinson RK (2004) A study of the effects of adjunct cultures on the aroma compounds of Feta-type cheese. Food Chem 88(3):435–441.  https://doi.org/10.1016/j.foodchem.2004.01.057CrossRefGoogle Scholar
  8. Boonmak C, Limtong S, Jindamorakot S, Am-In S, Yongmanitchai W, Suzuki K, Nakase T, Kawasaki H (2011) Candida xylanilytica sp. nov., a xylan-degrading yeast species isolated from Thailand. Int J Syst Evol Microbiol 61(Pt5):1230–1234.  https://doi.org/10.1099/ijs.0.021873-0CrossRefPubMedGoogle Scholar
  9. Booth JL, Vishniac HS (1987) Urease testing and yeast taxonomy. Can J Microbiol 33(5):396–404.  https://doi.org/10.1139/m87-069CrossRefPubMedGoogle Scholar
  10. Butinar L, Strmole T, Gunde-Cimerman N (2011) Relative incidence of ascomycetous yeasts in arctic coastal environment. Microb Ecol 61(4):832–843.  https://doi.org/10.1007/s00248-010-9794–3CrossRefPubMedGoogle Scholar
  11. Čadež N, Dlauchy D, Raspor P, Péter G (2013) Ogataea kolombanensis sp. nov., Ogataea histrianica sp. nov. and Ogataea deakii sp. nov., three novel yeast species from plant sources. Int J Syst Evol Microbiol 63(Pt8):3115–3123.  https://doi.org/10.1099/ijs.0.052589-0CrossRefPubMedGoogle Scholar
  12. Čadež N, Dlauchy D, Tóbiás A, Péter G (2017) Kuraishia mediterranea sp. nov., a methanol-assimilating yeast species from olive oil and its sediment. Int J Syst Evol Microbiol 67(11):4846–4850.  https://doi.org/10.1099/ijsem.0.002392CrossRefPubMedGoogle Scholar
  13. Carreira A, Loureiro V (1998) A differential medium to detect Yarrowia lipolytica within 24 hours. J Food Mycol 1:3–12Google Scholar
  14. Chang C-F, Chen C-C, Lee C-F, Liu S-M (2013) Identifying and characterizing Yarrowia keelungensis sp. nov., an oil-degrading yeast isolated from the sea surface microlayer. A Van Leeuw J Microb 104(6):1117–1123.  https://doi.org/10.1007/s10482-013-0033-zCrossRefGoogle Scholar
  15. Chen L-S, Ma Y, Maubois J-L, Chen L-J, Liu Q-H, Guo J-P (2010) Identification of yeasts from raw milk and selection for some specific antioxidant properties. Int J Dairy Technol 63(1):47–54.  https://doi.org/10.1111/j.1471-0307.2009.00548.xCrossRefGoogle Scholar
  16. Coelho MAZ, Amaral PFF, Belo I (2010) Yarrowia lipolytica: an industrial workhorse. In: Mendez-Vilas A (ed) Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Formatex Research Center, Badajoz, pp 930–944Google Scholar
  17. Corbo MR, Lanciotti R, Albenzio M, Sinigaglia M (2001) Occurrence and characterization of yeasts isolated from milks and dairy products of Apulia region. Int J Food Microbiol 69(1–2):147–152.  https://doi.org/10.1016/S0168-1605(01)00585-2CrossRefPubMedGoogle Scholar
  18. Daniel HM, Vrancken G, Takrama JF, Camu N, De Vos P, De Vuyst L (2009) Yeast diversity of Ghanaian cocoa bean heap fermentations. FEMS Yeast Res 9(5):774–783.  https://doi.org/10.1111/j.1567-1364.2009.00520.xCrossRefPubMedGoogle Scholar
  19. Daniel HM, Lachance MA, Kurtzman CP (2014) On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. A Van Leeuw J Microb 106(1):67–84.  https://doi.org/10.1007/s10482-014-0170-zCrossRefGoogle Scholar
  20. de Koning W, Harder W (1992) Methanol-utilizing yeasts. In: Murell JC, Dalton H (eds) Methane and methanol utilizers. Plenum Press, New York, pp 207–244CrossRefGoogle Scholar
  21. Deák T (2006) Candida and related genera. In: Blackburn C (ed) Food spoilage microorganisms. Woodhead Publishing Limited, Cambridge, pp 334–353Google Scholar
  22. Deák T (2008) Handbook of food spoilage yeasts, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  23. Diriye EU, Scorzeiti G, Martini A (1993) Methods for the separation of yeast cells from surfaces of processed, frozen foods. Int J Food Microbiol 19(1):27–37.  https://doi.org/10.1016/0168-1605(93)90121-VCrossRefPubMedGoogle Scholar
  24. Dlauchy D, Tornai-Lehoczki J, Fülöp L, Péter G (2003) Pichia (Komagataella) pseudopastoris sp. nov., a new yeast species from Hungary. A Van Leeuw J Microb 83(4):327–332.  https://doi.org/10.1023/A:1023318829389CrossRefGoogle Scholar
  25. Drake SD, Evans JB, Niven CF (1959) The identity of yeasts in the surface flora of packaged frankfurters. J Food Sci 24(3):243–246.  https://doi.org/10.1111/j.1365-2621.1959.tb17268.xCrossRefGoogle Scholar
  26. Encinas JP, López-Diáz TM, García-López ML, Otero A, Moreno B (2000) Yeast populations on Spanish fermented sausages. Meat Sci 54(3):203–208.  https://doi.org/10.1016/S0309-1740(99)00080-7CrossRefPubMedGoogle Scholar
  27. Fall R, Benson AA (1996) Leaf methanol – the simplest natural product from plants. Trends Plant Sci 1(9):296–301.  https://doi.org/10.1016/S1360-1385(96)88175-0CrossRefGoogle Scholar
  28. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791.  https://doi.org/10.2307/2408678CrossRefPubMedGoogle Scholar
  29. Fleet GH (1990) Yeasts in dairy products. J Appl Bacteriol 68:199–211CrossRefGoogle Scholar
  30. Fleet GH (1992) Spoilage yeasts. Crit Rev Biotechnol 12(1–2):1–44.  https://doi.org/10.3109/07388559209069186CrossRefPubMedGoogle Scholar
  31. Fonseca Á, Inácio J (2006) Phylloplane yeasts. In: Rosa C, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 263–301CrossRefGoogle Scholar
  32. Fournier P, Gaillardin C, Persuy MA, Klootwijk J, Heerikhuizen H (1986) Heterogeneity in the ribosomal family of the yeast Yarrowia lipolytica: genomic organization and segregation studies. Gene 42(3):273–282.  https://doi.org/10.1016/0378-1119(86)90231-3CrossRefPubMedGoogle Scholar
  33. Fröhlich-Wyder MT (2003) Yeasts in dairy products. In: Boekhout T, Robert V (eds) Yeasts in food: beneficial and detrimental aspects. CRC Press, Boca Raton, pp 209–237CrossRefGoogle Scholar
  34. Fung DY, Liang C (1990) Critical review of isolation, detection, and identification of yeasts from meat products. Crit Rev Food Sci 29(5):341–379.  https://doi.org/10.1080/10408399009527532CrossRefGoogle Scholar
  35. Gadaga TH, Mutukumira AN, Narvhus JA (2000) Enumeration and identification of yeasts isolated from Zimbabwean traditional fermented milk. Int Dairy J 10(7):459–466.  https://doi.org/10.1016/S0958-6946(00)00070-4CrossRefGoogle Scholar
  36. Galán-Sánchez F, Garcia-Agudo L, Garcia-Martos P, Rodrigues-Iglesias M (2014) Candida galli as a cause of tinea unguium - molecular characterization of a rare clinical fungal entity. Mycopathologia 178(3–4):303–330.  https://doi.org/10.1007/s11046-014-9789-6CrossRefPubMedGoogle Scholar
  37. Galbally IE, Kirstine W (2002) The production of methanol by flowering plants and the global cycle of methanol. J Atmos Chem 43(3):195–229.  https://doi.org/10.1023/A:1020684815474CrossRefGoogle Scholar
  38. Gardini F, Suzzi G, Lombardi A, Galgano F, Crudele MA, Andrighetto C, Schirone M, Tofalo R (2001) A survey of yeasts in traditional sausages of southern Italy. FEMS Yeast Res 1(2):161–167.  https://doi.org/10.1016/S1567-1356(01)00024-1CrossRefPubMedGoogle Scholar
  39. Gasser B, Mattanovich D (2018) A yeast for all seasons – is Pichia pastoris a suitable chassis organism for future bioproduction? FEMS Microbiol Lett 365(17):1–4.  https://doi.org/10.1093/femsle/fny181CrossRefGoogle Scholar
  40. Glushakova AM, Maximova IA, Kachalkin AV, Yurkov AM (2010) Ogataea cecidiorum sp. nov., a methanol-assimilating yeast isolated from galls on willow leaves. A Van Leeuw J Microb 98(1):93–101.  https://doi.org/10.1007/s10482-010-9433-5CrossRefGoogle Scholar
  41. Gouliamova DE, Dimitrov RA, Guéorguiev BV, Smith MT, Groenewald M (2017) Yarrowia parophonii. Fungal Planet description sheets Personia 39:288–289Google Scholar
  42. Groenewald M, Smith MT (2013) The teleomorph state of Candida deformans Langeron & Guerra and description of Yarrowia yakushimensis comb. nov. A Van Leeuw J Microb 103(5):1023–1028.  https://doi.org/10.1007/s10482-013-9882-8CrossRefGoogle Scholar
  43. Groenewald M, Boekhout T, Neuvéglise C, Gaillardin C, van Dijck PWM, Wyss M (2013) Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol 40(3):187–206.  https://doi.org/10.3109/1040841X.2013.770386CrossRefPubMedGoogle Scholar
  44. Groenewald M, Lombard L, de Vries M, Lopez AG, Smith M, Crous PW (2018) Diversity of yeast species from Dutch garden soil and the description of six novel Ascomycetes. FEMS Yeast Res 18(7).  https://doi.org/10.1093/femsyr/foy076
  45. Guerzoni ME, Lancotti R, Marchetti R (1993) Survey of the physiological properties of the most frequent yeasts associated with commercial chilled foods. Int J Food Microbiol 17(4):329–341.  https://doi.org/10.1016/0168-1605(93)90203-sCrossRefPubMedGoogle Scholar
  46. Guerzoni ME, Lanciotti R, Vannini L, Galgano F, Favati F, Gardini F, Suzzi G (2001) Variability of the lipolytic activity in Yarrowia lipolytica and its dependence on environmental conditions. It J Food Microbiol 69(1–2):79–89.  https://doi.org/10.1016/S0168-1605(01)00575-xCrossRefGoogle Scholar
  47. Harder V, Veenhuis M (1989) Metabolism of one-carbon compounds. In: Rose A, Harrison J (eds) Metabolism and physiology of yeasts, 3rd edn. Academic, San Diego, pp 289–316Google Scholar
  48. Hawksworth DL (2011) A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. MycoKeys 1:7–20.  https://doi.org/10.3897/mycokeys.1.2062CrossRefGoogle Scholar
  49. Hawksworth DL, Crous PW, Redhead AS, Reynolds DR, Samson RA, Seifert KA, Taylor JW, Wingfield MJ, 80 signers (2011) The Amsterdam declaration on fungal nomenclature. Mycotaxon 2(1):491–500.  https://doi.org/10.5598/imafungus.2011.02.01.14CrossRefGoogle Scholar
  50. Hazeu W, de Bruyn JC, Bos P (1972) Methanol assimilation by yeasts. Arch Mikrobiol 87(2):185–188.  https://doi.org/10.1007/BF00425000CrossRefPubMedGoogle Scholar
  51. Ismail SAS, Deák T, Abd-Rahman HA, Yassien MA, Beuchat LR (2000) Presence and changes in populations of yeasts on raw and processed poultry products stored at refrigeration temperature. Int J Food Microbiol 62(1–2):113–121.  https://doi.org/10.1016/S0168-1605(00)00414-1CrossRefPubMedGoogle Scholar
  52. Johnson EA, Echavarri-Erasun C (2011) Yeast biotechnology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 21–63CrossRefGoogle Scholar
  53. Kawaguchi K, Yurimoto H, Oku M, Sakai Y (2011) Yeast methylotrophy and autophagy in a methanol-oscillating environment on growing Arabidopsis thaliana leaves. PLoS One 6:e25257.  https://doi.org/10.1371/journal.pone.0025257CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kemler M, Witfeld F, Begerow D, Yurkov A (2017) Phylloplane yeasts in temperate climates. In: Buzzini P, Lachance MA, Yurkov A (eds) Yeasts in natural ecosystems: diversity. Springer, Cham, pp 171–197CrossRefGoogle Scholar
  55. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120.  https://doi.org/10.1007/BF01731581CrossRefPubMedGoogle Scholar
  56. Knutsen AK, Robert V, Poot A, Epping W, Figge M, Holst-Jensen A, Skaar I, Smith MT (2007) Polyphasic re-examination of Yarrowia lipolytica strains and the description of three novel Candida species: Candida oslonensis sp. nov., Candida alimentaria sp. nov. and Candida hollandica sp. nov. Int J Syst Evol Micr 57(10):2426–2435.  https://doi.org/10.1099/ijs.0.65200-0CrossRefGoogle Scholar
  57. Koowadjanakul N, Jindamorakot S, Yongmanitchai W, Limtong S (2011) Ogataea phyllophila sp. nov., Candida chumphonensis sp. nov. and Candida mattranensis sp. nov., three methylotrophic yeast species from phylloplane in Thailand. A Van Leeuw J Microb 100(2):207–217.  https://doi.org/10.1007/s10482-011-9579-9CrossRefGoogle Scholar
  58. Kreger-van Rij NJW (1984) The yeasts: a taxonomic study, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  59. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549.  https://doi.org/10.1093/molbev/msy096CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kurtzman CP (1984) Synonymy of the yeast genera Hansenula and Pichia demonstrated through comparisons of deoxyribonucleic acid relatedness. A Van Leeuw J Microb 50(3):209–217.  https://doi.org/10.1007/BF02342132CrossRefGoogle Scholar
  61. Kurtzman CP (1998) Yarrowia van der Walt & von Arx. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 420–421CrossRefGoogle Scholar
  62. Kurtzman CP (2005) New species and a new combination in the Hyphopichia and Yarrowia yeast clades. Anton Leeuw Int J G 88(2):121–130.  https://doi.org/10.1007/s10482-005-2495-0CrossRefGoogle Scholar
  63. Kurtzman CP (2009) Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis. J Ind Microbiol Biot 36(11):1435–1438.  https://doi.org/10.1007/s10295-009-0638-4CrossRefGoogle Scholar
  64. Kurtzman CP (2011a) Discussion of teleomorphic and anamorphic ascomycetous yeasts and yeast-like taxa. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 293–307CrossRefGoogle Scholar
  65. Kurtzman CP (2011b) Ogataea Y. Yamada, K. Maeda & Mikata (1994). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, p 645–671Google Scholar
  66. Kurtzman CP (2011c) Pichia E.C. Hansen (1904) In: Kurtzman CP, Fell JW, Boekhout T (eds) the yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, p 685–708Google Scholar
  67. Kurtzman CP (2011d) Komagataella Y. Yamada, Matsuda, Maeda & Mikata (1995) In: Kurtzman CP, Fell JW, Boekhout T (eds) the yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, p 491–495Google Scholar
  68. Kurtzman CP (2012) Komagataella populi sp. nov. and Komagataella ulmi sp. nov., two new methanol assimilating yeasts from exudates of deciduous trees. A Van Leeuw J Microb 101(4):859–868.  https://doi.org/10.1007/s10482-012-9702-6CrossRefGoogle Scholar
  69. Kurtzman CP and Fell JW (eds) (1998) The Yeasts: A Taxonomic Study, 4th edn. Elsevier Science, B.V. AmsterdamGoogle Scholar
  70. Kurtzman CP, Robnett CJ (1994) Orders and families of ascosporogenous yeasts and yeastlike taxa compared from ribosomal RNA sequence similarities. In: Hawksworth DL (ed) Ascomycete systematics: problems and perspectives in the nineties. Plenum Press, New York, pp 249–258CrossRefGoogle Scholar
  71. Kurtzman CP, Robnett CJ (1995) Molecular relationships among hyphal ascomycetous yeasts and yeastlike taxa. Can J Bot 73(S1):824–830.  https://doi.org/10.1139/b95-328CrossRefGoogle Scholar
  72. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. A Van Leeuw J Microb 73(4):331–371.  https://doi.org/10.1023/A:1001761008817CrossRefGoogle Scholar
  73. Kurtzman CP, Robnett CJ (2010) Systematics of methanol assimilating yeasts and neighboring taxa from multigene sequence analysis and the proposal of Peterozyma gen. nov., a new member of the Saccharomycetales. FEMS Yeast Res 10(3):353–361.  https://doi.org/10.1111/j.1567-1364.2010.00625.xCrossRefPubMedGoogle Scholar
  74. Kurtzman CP, Robnett CJ (2013a) Relationships among Genera of the Saccharomycotyna (Ascomycota) from multigene phylogenetic analysis of type species. FEMS Yeast Res 13(1):23–33.  https://doi.org/10.1111/1567-1364.12006CrossRefPubMedGoogle Scholar
  75. Kurtzman CP, Robnett CJ (2013b) Alloascoidea hylecoeti gen. nov., comb. nov., Alloascoidea africana comb. nov., Ascoidea tarda sp. nov., and Nadsonia starkeyi-henricii comb. nov., new members of the Saccharomycotina (Ascomycota). FEMS Yeast Res 13(5):423–432.  https://doi.org/10.1111/1567-1364.12044CrossRefPubMedGoogle Scholar
  76. Kurtzman CP, Robnett CJ (2014) Description of Kuraishia piskuri f.a., sp. nov., a new methanol assimilating yeast and transfer of phylogenetically related Candida species to the genera Kuraishia and Nakazawaea as new combinations. FEMS Yeast Res 14(7):1028–1036.  https://doi.org/10.1111/1567-1364.12192CrossRefPubMedGoogle Scholar
  77. Kurtzman CP, Robnett CJ, Basehoar-Powers E (2008) Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. Nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 8(6):939–954.  https://doi.org/10.1111/j.1567-1364.2008.00419.xCrossRefPubMedGoogle Scholar
  78. Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts, a taxonomic study, 5th edn. Elsevier, AmsterdamGoogle Scholar
  79. Lachance MA (2003) The Phaff school of yeast ecology. Int Microbiol 6(3):163–167.  https://doi.org/10.1007/s10123-003-0129-9CrossRefPubMedGoogle Scholar
  80. Lachance MA, Klemens JA, Bowles JM, Janzen DH (2001) The yeast community of sap fluxes of Costa Rican Maclura (Chlorophora) tinctoria and description of two new yeast species, Candida galis and Candida ortonii. FEMS Yeast Res 1(2):87–92.  https://doi.org/10.1111/j.1567-1364.2001.tb00019.xCrossRefPubMedGoogle Scholar
  81. Lachance MA, Boekhout T, Scorzetti G, Fell JW, Kurtzman CP (2011) Candida Berkhout (1923). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 987–1278CrossRefGoogle Scholar
  82. Lanciotti R, Massa S, Guerzoni ME, Di Fabio G (1992) Light butter: natural microbial population and potential growth of Listeria monocytogenes and Yersinia enterocolitica. Lett Appl Microbiol 15(6):256–258.  https://doi.org/10.1111/j.1472-765X.1992.tb00777.xCrossRefGoogle Scholar
  83. Lanciotti R, Vannini L, Chaves Lopez C, Gobbetti M, Guerzoni ME (2005) Evaluation of the ability of Yarrowia lipolytica to impart strain-dependent characteristics to cheese when used as a ripening adjunct. Int J Dairy Technol 58(2):89–99.  https://doi.org/10.1111/j.1471-0307.2005.00197.xCrossRefGoogle Scholar
  84. Larpin S, Mondoloni C, Goerges S, Vernoux J-P, Guéguen M, Desmasures N (2006) Geotrichum candidum dominates in yeast population dynamics in Livarot, a French redsmear cheese. FEMS Yeast Res 6(8):1243–1253.  https://doi.org/10.1111/j.1567-1364.2006.00127.xCrossRefPubMedGoogle Scholar
  85. Lee J-D, Komagata K (1980) Taxonomic study of methanol-assimilating yeasts. J Gen Appl Microbiol 26(2):133–158.  https://doi.org/10.2323/jgam.26.133CrossRefGoogle Scholar
  86. Leme FC, de Barros Negreiros MM, Koga FA, de Moraes Gimenes Bosco S, Bagagli E, Haddad V Jr (2011) Evaluation of pathogenic fungi occurrence in traumatogenic structures of freshwater fish. Rev Soc Bras Med Tro 44(2):182–185. doi: https://doi.org/10.1590/S0037-86822011005000007CrossRefGoogle Scholar
  87. Levine DW, Cooney CL (1973) Isolation and characterization of a thermotolerant methanol-utilizing yeast. Appl Microbiol 26(6):982–990PubMedPubMedCentralGoogle Scholar
  88. Liang C (1989) Rapid presumptive identification of yeasts in meat products, thesis. Kansas State University p 146Google Scholar
  89. Limtong S, Nasanit R (2017) Phylloplane yeasts in tropical climates. In: Buzzini P, Lachance MA, Yurkov A (eds) Yeasts in natural ecosystems: diversity. Springer, Cham, pp 199–223CrossRefGoogle Scholar
  90. Limtong S, Youngmanitchai W, Kawasaki H, Seki T (2008) Candida phangngensis sp. nov., an anamorphic yeast species in the Yarrowia clade, isolated from water in mangrove forests in Phang-Nga Province, Thailand. Int J Syst Evol Micr 58(Pt2):515–519.  https://doi.org/10.1099/ijs.0.65506-0CrossRefGoogle Scholar
  91. Limtong S, Kaewwichian R, Groenewald M (2013) Ogataea kanchanaburiensis sp. nov. and Ogataea wangdongensis sp. nov., two novel methylotrophic yeast species from phylloplane in Thailand. A Van Leeuw J Microb 103(3):551–558.  https://doi.org/10.1007/s10482-012-9837-5CrossRefGoogle Scholar
  92. Lin CCS, Fung DYC (1985) Effect of dyes on the growth of food yeasts. J Food Sci 50(1):241–244.  https://doi.org/10.1111/j.1365-2621.1985.tb13319.xCrossRefGoogle Scholar
  93. Liu KF, Li XH, Hui FL (2018) Yarrowia brassicae f.a., sp. nov., a new yeast species from traditional Chinese sauerkraut. Int J Syst Evol Microbiol 68(6):2024–2027.  https://doi.org/10.1099/ijsem.0.002783CrossRefPubMedGoogle Scholar
  94. Lodder J (ed) (1970) The yeasts: a taxonomic study, 2nd edn. North-Holland Publishing Company, AmsterdamGoogle Scholar
  95. Lodder J, Kreger-van Rij NJW (1952) The yeasts: a taxonomic study. North-Holland Publishing Company, AmsterdamGoogle Scholar
  96. Lopandic K, Zelger S, Bánszky LK, Eliskases-Lechner F, Prillinger H (2006) Identification of yeasts associated with milk products using traditional and molecular techniques. Food Microbiol 23(4):341–350.  https://doi.org/10.1016/j.fm.2005.05.001CrossRefPubMedGoogle Scholar
  97. Lourens-Hattingh A, Viljoen BC (2002) Survival of dairy-associated yeasts in yoghurt and yoghurt-related products. Food Microbiol 19(6):597–604.  https://doi.org/10.1006/fmic.2002.0515CrossRefGoogle Scholar
  98. Lu YF, Wang M, Zheng J, Hui FL (2017) Ogataea neixiangensis sp. nov. and Ogataea paraovalis f.a., sp. nov., two methanol-assimilating yeast species isolated from rotting wood. Int J Syst Evol Microbiol 67(8):3038–3042.  https://doi.org/10.1099/ijsem.0.002075CrossRefPubMedGoogle Scholar
  99. MacDonald RC, Fall R (1993) Detection of substantial emissions of methanol from plants to the atmosphere. Atmos Environ A-Gen 27(11):1709–1713.  https://doi.org/10.1016/0960-1686(93)90233-oCrossRefGoogle Scholar
  100. McIlvaine TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183–186Google Scholar
  101. McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth, DL, Herendeen PS, Knapp S, Marhold K et al. (2012) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). Koeltz Scientific Books. http://www.iapt-taxon.org/nomen/main.php. ISBN:9783874294256
  102. Meyer SA, Ahearn DG, Yarrow D (1984) Candida Berkhout. In: Kreger-van Rij NJW (ed) The yeasts, a taxonomic study, 3rd edn. Elsevier, Amsterdam, pp 585–849Google Scholar
  103. Michely S, Gaillardin C, Nicaud J-M, Neuvéglise C (2013) Comparative physiology of oleaginous species from the Yarrowia clade. PLoS One 8(5).:7. Article number: e63356  https://doi.org/10.1371/journal.pone.0063356CrossRefGoogle Scholar
  104. Miller MW, Phaff HJ, Miranda M, Heed WB, Starmer WT (1976) Torulopsis sonorensis, a new species of the genus Torulopsis. Int J Syst Bacteriol 26:88–91.  https://doi.org/10.1099/00207713-26-1-88CrossRefGoogle Scholar
  105. Monnet C, Bleicher A, Neuhaus K, Sarthou AS, Leclercq-Perlat M-N, Irlinger F (2010) Assessment of the antilisterial activity of microfloras from the surface of smear-ripened cheeses. Food Microbiol 27(2):302–310.  https://doi.org/10.1016/j.fm.2009.11.009CrossRefPubMedGoogle Scholar
  106. Nagatsuka Y, Saito S, Sugiyama J (2008) Ogataea neopini sp. nov. and O. corticis sp. nov., with the emendation of the ascomycete yeast genus Ogataea, and transfer of Pichia zsoltii, P. dorogensis, and P. trehaloabstinens to it. J Gen Appl Microbiol 54(6):353–365.  https://doi.org/10.2323/jgam.54.353CrossRefPubMedGoogle Scholar
  107. Nagy E (2014a) Differentiation of food spoilage yeast strains of the Yarrowia group by microsatellite polymerase chain reaction fingerprinting. J Univ Sci 1(1):6–11.  https://doi.org/10.17202/JUSO.2014.1.6CrossRefGoogle Scholar
  108. Nagy E (2014b) Isolation and diversity of food spoilage Yarrowia yeast strains from meat. Acta Aliment Hung 3(Supplement 1):101–106.  https://doi.org/10.1556/AAlim.43.2014.Suppl.15CrossRefGoogle Scholar
  109. Nagy E, Niss M, Dlauchy D, Arneborg N, Nielsen DS, Péter G (2013) Yarrowia divulgata f.a., sp. nov., a yeast species from animal-related and marine sources. Int J Syst Eol Microbiol 63(Pt12):4818–4823.  https://doi.org/10.1099/ijs.0.057208-0CrossRefGoogle Scholar
  110. Nagy E, Dlauchy D, Medeiros AO, Péter G, Rosa CA (2014) Yarrowia porcina sp. nov. and Yarrowia bubula f.a. sp. nov., two yeast species from meat and river sediment. A Van Leeuw J Microb 105(4):697–707.  https://doi.org/10.1007/s10482-014-0125-4CrossRefGoogle Scholar
  111. Nakase T, Imanishi Y, Ninomiya S, Takashima M (2010) Candida rishirensis sp. nov., a novel methylotrophic anamorphic yeast species isolated from soil on Rishiri Island in Japan. J Appl Microbiol 56(2):169–173.  https://doi.org/10.2323/jgam.56.169CrossRefGoogle Scholar
  112. Naumov GI, Naumova ES, Tyurin OV, Kozlov DG (2013) Komagataella kurtzmanii sp. nov., a new sibling species of Komagataella (Pichia) pastoris in accordance with multigene sequence analysis. A Van Leeuw J Microb 104(3):339–347.  https://doi.org/10.1007/s10482-013-9956-7CrossRefGoogle Scholar
  113. Naumov GI, Naumova ES, Lee CF (2017) Ogataea haglerorum sp. nov., a novel member of the species complex, Ogataea (Hansenula) polymorpha. Int J Syst Evol Microbiol 67(7):2465–2469.  https://doi.org/10.1099/ijsem.0.002012CrossRefGoogle Scholar
  114. Naumov GI, Shalamitskiy MY, Naumova ES, Lee CF (2018a) Phylogenetics, biogeography, and ecology of methylotrophic yeasts of the heterogeneous genus Ogataea: achievements and prospects. Microbiology 87(4):443–452.  https://doi.org/10.1134/S002626171804015xCrossRefGoogle Scholar
  115. Naumov GI, Naumova ES, Boundy-Mills KL (2018b) Description of Komagataella mondaviorum sp. nov., a new sibling species of Komagataella (Pichia) pastoris. A Van Leeuw J Microb 111(7):1197–1207.  https://doi.org/10.1007/s10482-018-1028-6CrossRefGoogle Scholar
  116. Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowsky CL, Fall R (1995) Methanol emission from leaves. Plant Physiol 108(4):1359–1368.  https://doi.org/10.1104/pp.108.4.1359CrossRefPubMedPubMedCentralGoogle Scholar
  117. Nielsen DS, Jacobsen T, Jespersen L, Koch AG, Arneborg N (2008) Occurrence and growth of yeasts in processed meat products: implications for potential spoilage. Meat Sci 80(3):919–926.  https://doi.org/10.1016/j.meatsci.2008.04.011CrossRefPubMedGoogle Scholar
  118. Ogata K, Nishikawa H, Ohsugi M (1969) A yeast capable of utilizing methanol. Agr Biol Chem 33(10):1519–1520.  https://doi.org/10.1080/00021369.1969.10859497CrossRefGoogle Scholar
  119. Ogata K, Nishikawa H, Ohsugi M, Tochikura T (1970) Studies on the production of yeast (II) the cultural conditions of methanol assimilatin yeast Kloeckera sp. No. 2201. J Ferment Technol 48:470–477Google Scholar
  120. Oki T, Kouno K, Kitai A, Ozaki A (1972) New yeasts capable of assimilating methanol. J Gen Appl Microbiol 18(4):295–305.  https://doi.org/10.2323/jgam.18.295CrossRefGoogle Scholar
  121. Ozturk I (2015) Presence, changes and technological properties of yeast species during processing of pastirma, a Turkish dry cured meat product. Food Control 50:76–84.  https://doi.org/10.1016/j.foodcont.2014.08.039CrossRefGoogle Scholar
  122. Palande AS, Kulkarni SV, León-Ramirez C, Campos-Góngora E, Ruiz-Herrera J, Deshpande MV (2014) Dimorphism and hydrocarbon metabolism in Yarrowia lipolytica var. indica. Arch Microbiol 196(8):545–556.  https://doi.org/10.1007/s00203-014-0990-2CrossRefPubMedGoogle Scholar
  123. Peñuelas J, Filella I, Stefanescu C, Llusià J (2005) Caterpillars of Euphydryas aurinia (Lepidoptera: Nymphalidae) feeding on Succisa pratensis leaves induce large foliar emissions of methanol. New Phytol 167(3):851–857.  https://doi.org/10.1111/j.1469-8137.2005.01459.xCrossRefPubMedGoogle Scholar
  124. Péter G (2011) Kuraishia Y. Yamada, Maeda & Mikata (1994). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 503–506CrossRefGoogle Scholar
  125. Péter G, Deák T (1991) On the false positive urease activity of Yarrowia lipolytica. A Van Leeuw J Microb 60(1):55–59.  https://doi.org/10.1007/BF00580442CrossRefGoogle Scholar
  126. Péter G, Dlauchy D, Vasdinyei R, Tornai-Lehoczki J, Deák T (2004) Candida galli sp. nov., a new yeast from poultry. Anton Leeuw Int J G 86(2):105–110.  https://doi.org/10.1023/B:ANTO.0000036117.03847.bdCrossRefGoogle Scholar
  127. Péter G, Tornai-Lehoczki J, Dlauchy D (2007) Ogataea allantospora sp. nov., an ascomycetous yeast species from phylloplane. A Van Leeuw J Microb 92(4):443–448.  https://doi.org/10.1007/s10482-007-9172-4CrossRefGoogle Scholar
  128. Péter G, Tornai-Lehoczki J, Dlauchy D (2009a) Candida ogatae sp. nov., an anamorphic member of the Kuraishia clade. FEMS Yeast Res 9(2):328–333.  https://doi.org/10.1111/j.1567-1364.2008.00466.xCrossRefPubMedGoogle Scholar
  129. Péter G, Tornai-Lehoczki J, Dlauchy D (2009b) Ogataea populialbae sp. nov., a yeast species from white poplar. FEMS Yeast Res 9(6):936–941.  https://doi.org/10.1111/j.1567-1364.2009.00547.xCrossRefPubMedGoogle Scholar
  130. Péter G, Tornai-Lehoczki J, Dlauchy D (2010) Ogataea pignaliae sp. nov., the teleomorph of Candida pignaliae. Int J Syst Evol Microbiol 60(Pt10):2496–2500.  https://doi.org/10.1099/ijs.0.019174-0CrossRefPubMedGoogle Scholar
  131. Péter G, Dlauchy D, Tornai-Lehoczki J, Gouliamova D, Kurtzman CP (2011) Ogataea saltuana sp. nov., a novel methanol-assimilating yeast species. A Van Leeuw J Microb 100(3):375–383.  https://doi.org/10.1007/s10482-011-9592-zCrossRefGoogle Scholar
  132. Phaff HJ, Starmer WT (1987) Yeasts associated with plants, insects and soil. In: Rose AH, Harrison JS (eds) The yeasts, vol 1. The biology of yeasts, 2nd edn. Academic, London, pp 123–180Google Scholar
  133. Phaff HJ, Miller MW, Mrak EM (1978) The life of yeasts, 2nd edn. Harvard University Press, Cambridge, MACrossRefGoogle Scholar
  134. Pitt JI, Hocking AD (2009) Fresh and perishable foods. In: Pitt JI, Hocking AD (eds) Fungi and food spoilage, 3rd edn. Springer, London, pp 383–400CrossRefGoogle Scholar
  135. Praphailong W, Fleet GH (1997) The effect of pH, sodium chloride, sucrose, sorbate and benzoate on the growth of food spoilage yeasts. Food Microbiol 14(5):459–468.  https://doi.org/10.1006/fmic.1997.0106CrossRefGoogle Scholar
  136. Rakicka M, Kieroń A, Piotr Hapeta P, Neuveglise-Degouy C, Lazar Z (2016) Sweet and sour potential of yeast from the Yarrowia clade. Biomass Bioenergy 92:48–54.  https://doi.org/10.1016/j.biombioe.2016.06.004CrossRefGoogle Scholar
  137. Ramírez-Castrillón M, Mendes SDC, Inostroza-Ponta M, Valente P (2014) (GTG)5 MSPPCR fingerprinting as a technique for discrimination of wine associated yeasts? PLoS One 9(8):e105870.  https://doi.org/10.1371/journal.pone.0105870CrossRefPubMedPubMedCentralGoogle Scholar
  138. Rohm H, Eliskases-Lechner F, Bräuer M (1992) Diversity of yeasts in selected dairy products. J Appl Bacteriol 72(5):370–376.  https://doi.org/10.1111/j.1365-2672.1992.tb01848.xCrossRefGoogle Scholar
  139. Romano P, Capece A, Jespersen L (2006) Taxonomic and ecological diversity of food and beverage yeasts. In: Querol A, Fleet G (eds) The Yeast Handbook, volume 2, Yeasts in food and beverages. Springer, Berlin/Heidelberg, pp 13–54CrossRefGoogle Scholar
  140. Roostita R, Fleet GH (1996) The occurrence and growth of yeasts in Camembert and blueveined cheeses. Int J Food Microbiol 28(3):393–404.  https://doi.org/10.1016/0168-1605(95)00018-6CrossRefPubMedGoogle Scholar
  141. Roscini L, Tristezza M, Corte L, Colabella C, Perrotta C, Rampino P, Robert V, Vu D, Cardinali G, Grieco F (2018) Early ongoing speciation of Ogataea uvarum sp. nov. within the grape ecosystem revealed by the internal variability among the rDNA operon repeats. Front Microbiol 3(9):1687.  https://doi.org/10.3389/fmicb.2018.01687CrossRefGoogle Scholar
  142. Sahm H, Wagner F (1972) Microbial assimilation of methanol. Arch Mikrobiol 84(1):29–42.  https://doi.org/10.1111/j.1432-1033.1973.tb02907.xCrossRefPubMedGoogle Scholar
  143. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 24(4):406–425.  https://doi.org/10.1093/oxfordjournals.molbev.a040454CrossRefGoogle Scholar
  144. Samelis J, Sofos JN (2003) Yeasts in meat and meat products. In: Boekhout T, Robert V (eds) Yeasts in food. CRC Press, Boca Raton, pp 239–266CrossRefGoogle Scholar
  145. Santos AR, Faria ES, Lachance MA, Rosa CA (2015) Ogataea mangiferae sp. nov., a methylotrophic yeast isolated from mango leaves. Int J Syst Evol Microbiol 65(6):1855–1859.  https://doi.org/10.1099/ijs.0.000194CrossRefPubMedGoogle Scholar
  146. Shen XX, Opulente DA, Kominek J et al (2018) Tempo and mode of genome evolution in the budding yeast subphylum. Cell 175(6):1533–1545.  https://doi.org/10.1016/j.cell.2018.10.023CrossRefPubMedGoogle Scholar
  147. Sinigaglia M, Lanciotti R, Guerzoni ME (1994) Biochemical and physiological characteristics of Yarrowia lipolytica strains in relation to isolation source. Can J Microbiol 40(1):54–59.  https://doi.org/10.1139/m94-008CrossRefPubMedGoogle Scholar
  148. Sipiczki M (2012) Candida borneonana sp. nov., a methanol-assimilating anamorphic yeast isolated from decaying fruit. Int J Syst Evol Microbiol 62(Pt9):2303–2306.  https://doi.org/10.1099/ijs.0.039412-0CrossRefPubMedGoogle Scholar
  149. Suh SO, Zhou J (2010a) Yeasts associated with the curculionid beetle Xyloterinus politus: Candida xyloterini sp. nov., Candida palmyrensis sp. nov. and three common ambrosia yeasts. Int J Syst Evol Microbiol 60(Pt7):1702–1708.  https://doi.org/10.1099/ijs.0.016907-0CrossRefPubMedGoogle Scholar
  150. Suh SO, Zhou JJ (2010b) Methylotrophic yeasts near Ogataea (Hansenula) polymorpha: a proposal of Ogataea angusta comb. nov. and Candida parapolymorpha sp. nov. FEMS Yeast Res 10(5):631–638.  https://doi.org/10.1111/j.1567-1364.2010.00634.xCrossRefPubMedGoogle Scholar
  151. Suzuki M, Suh S-O, Sugita T, Nakase T (1999) A phylogenetic study on galactosecontaining Candida species based on 18S ribosomal DNA sequences. The J Gen Appl Microbiol 45(5):229–238.  https://doi.org/10.2323/jgam.45.229CrossRefPubMedGoogle Scholar
  152. Suzzi G, Larnote M, Galgano F, Andrighetto C, Lombardi A, Lanciotti R, Guerzoni M (2001) Proteolytic, lipolytic and molecular characterization of Yarrowia lipolytica isolated from cheese. Int J Food Microbiol 69(1–2):69–77.  https://doi.org/10.1016/S0168-1605(01)00574-8CrossRefPubMedGoogle Scholar
  153. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol 9(4):678–687.  https://doi.org/10.1093/oxfordjournals.molbev.a040752CrossRefPubMedGoogle Scholar
  154. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526.  https://doi.org/10.1093/oxfordjournals.molbev.a040023CrossRefPubMedGoogle Scholar
  155. van Uden N, Buckley HR (1970) Candida Berkhout. In: Lodder J (ed) The yeasts, a taxonomic study, 2nd edn. North-Holland Publishing Company, Amsterdam, p 893–1087Google Scholar
  156. van den Tempel T, Jakobsen M (2000) The technological characteristics of Debaryomyces hansenii and Yarrowia lipolytica and their potential as starter cultures for production of Danablu. Int Dairy J 10(4):263–270.  https://doi.org/10.1016/S0958-6946(00)00053-4CrossRefGoogle Scholar
  157. van der Walt JP, von Arx JA (1980) The yeast genus Yarrowia gen. nov. A Van Leeuw J Microb 46(6):517–521.  https://doi.org/10.1007/bf00394008CrossRefGoogle Scholar
  158. van Dijken JP, Harder W (1974) Optimal conditions for the enrichment and isolation of methanol-assimilating yeasts. J Gen Microbiol 84(2):409–411.  https://doi.org/10.1099/00221287-84-2-409CrossRefPubMedGoogle Scholar
  159. Viljoen BC, Dykes GA, Callis M, von Holy A (1993) Yeasts associated with Vienna sausage packaging. Int J Food Microbiol 18(1):53–62.  https://doi.org/10.1016/0168-1605(93)90007-4CrossRefPubMedGoogle Scholar
  160. Viljoen BC, Lourens-Hattingh A, Ikalafeng B, Péter G (2003) Temperature abuse initiating yeast growth in yoghurt. Food Res Int 36(2):193–197.  https://doi.org/10.1016/S0963-9969(02)00138-2CrossRefGoogle Scholar
  161. Volfová O, Pilát P (1974) Studies on methanol-oxidizing yeasts. Folia Microbiol 19(5):249–256.  https://doi.org/10.1007/bf02878112CrossRefGoogle Scholar
  162. von Arx JA (1972) On Endomyces, Endomycopsis and related yeast-like fungi. A Van Leeuw J Microb 38(1):289–309.  https://doi.org/10.1007/bf02328100CrossRefGoogle Scholar
  163. Vu D, Groenewald M, Szöke S, Cardinali G, Eberhardt U, Stielow B, de Vries M, Verkleij GJM, Crous PW, Boekhout T, Robert V (2016) DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud Mycol 85:91–105.  https://doi.org/10.1016/j.simyco.2016.11.007CrossRefPubMedPubMedCentralGoogle Scholar
  164. van der Walt JP, Scott DB (1971) The yeast genus Saccharomycopsis Schiönning. Mycopath Mycol Appl 43(3–4):279–288. doi: https://doi.org/10.1007/bf02051747CrossRefGoogle Scholar
  165. Wegner GH, Harder W (1987) Methylotrophic yeasts–1986. In: van Verseveld HW, Duine JA (eds) Microbial growth on C1 compounds. Springer, Dordrecht p 131–138Google Scholar
  166. Welthagen JJ, Viljoen BC (1998) Yeast profile in Gouda cheese during processing and ripening. Int J Food Microbiol 41(3):185–194.  https://doi.org/10.1016/S0168-1605(98)00042-7CrossRefPubMedGoogle Scholar
  167. Wickerham LJ, Kurtzman CP, Herman AI (1970) Sexual reproduction in Candida lipolytica. Science 167(3921):11–41.  https://doi.org/10.1126/science.167.3921.1141CrossRefGoogle Scholar
  168. Wolter H, Laing E, Viljoen BC (2000) Isolation and identification of yeasts associated with intermediate moisture meats. Food Technol Biotech 38(1):69–75Google Scholar
  169. Yamada Y, Nojiri M, Matsuyama M, Kondo K (1976) Coenzyme Q system in the classification of the ascosporogenous yeast genera Debaryomyces, Saccharomyces, Kluyveromyces, and Endomycopsis. J Gen Appl Microbiol 22(6):325–337.  https://doi.org/10.2323/jgam.22.325CrossRefGoogle Scholar
  170. Yamada Y, Maeda K, Mikata K (1994) The phylogenetic relationships of the hat-shaped ascospore-forming, nitrate-assimilating Pichia species, formerly classified in the genus Hansenula Sydow et Sydow, based on the partial sequences of 18S and 26S ribosomal RNAs (Saccharomycetaceae): the proposals of three new genera, Ogataea, Kuraishia, and Nakazawaea. Biosci Biotech Bioch 58(7):1245–1257.  https://doi.org/10.1271/bbb.58.1245CrossRefGoogle Scholar
  171. Yamada Y, Matsuda M, Maeda K, Mikata K (1995) The phylogenetic relationships of methanol-assimilating yeasts based on the partial sequences of 18S and 26S ribosomal RNAs: the proposal of Komagataella gen. nov. (Saccharomycetaceae). Biosci Biotech Biochem 59(3):439–444.  https://doi.org/10.1271/bbb.59.439CrossRefGoogle Scholar
  172. Yarrow D (1972) Four new combinations in yeasts. A Van Leeuw J Microb 38(1):357–360.  https://doi.org/10.1007/bf02328105CrossRefGoogle Scholar
  173. Yarrow D, Meyer SA (1978) Proposal for amendment of the diagnosis of the genus Candida Berkhout nom. cons. Int J Syst Bacteriol 28(4):611–615.  https://doi.org/10.1099/00207713-28-4-611CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gábor Péter
    • 1
    Email author
  • Edina Szandra Nagy
    • 2
  • Dénes Dlauchy
    • 1
  1. 1.National Collection of Agricultural and Industrial Microorganisms, Faculty of Food ScienceSzent István UniversityBudapestHungary
  2. 2.Department of Brewing and Distilling, Faculty of Food ScienceSzent István UniversityBudapestHungary

Personalised recommendations