Advertisement

Nitrogen Assimilation Pathways in Budding Yeasts

  • Tomas LinderEmail author
Chapter

Abstract

The element nitrogen is an essential macronutrient for all living organisms. Like other microorganisms, budding yeasts (phylum Ascomycota, subphylum Saccharomycotina) have evolved a versatile enzymatic toolbox for the extraction of nitrogen from a wide array of nitrogen-containing compounds. This chapter will review our current knowledge of pathways and enzymes involved in the assimilation of individual categories of nitrogen compounds including ammonia, nitrate, amino acids, amides, amines, purines, pyrimidines as well as aromatic and heterocyclic nitrogen compounds. The genes encoding the corresponding enzymes are listed whenever possible. Since the ability to assimilate specific categories of nitrogen compounds continue to be used for classification of budding yeasts, the taxonomic context of the occurrence of individual pathways and enzymes is emphasized throughout. Current as well as possible future biotechnology applications of budding yeast nitrogen assimilation pathways and enzymes are also discussed.

Keywords

Metabolism Nitrogen Orphan enzyme Orphan pathway Yeast 

Notes

Acknowledgments

The author wishes to thank Professor Terrance G. Cooper (University of Tennessee) and Professor Peter J. Large (University of Hull) for commenting on the text.

References

  1. Adachi MS, Torres JM, Fitzpatrick PF (2010) Mechanistic studies of the yeast polyamine oxidase Fms1: kinetic mechanism, substrate specificity, and pH dependence. Biochemistry 49:10440–10448PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andersen G, Andersen B, Dobritzsch D, Schnackerz KD, Piškur J (2007) A gene duplication led to specialized gamma-aminobutyrate and beta-alanine aminotransferase in yeast. FEBS J 274:1804–1817PubMedCrossRefGoogle Scholar
  3. Andersen G, Björnberg O, Polakova S, Pynyaha Y, Rasmussen A, Møller K, Hofer A, Moritz T, Sandrini MP, Merico AM, Compagno C, Akerlund HE, Gojković Z, Piškur J (2008) A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes. J Mol Biol 380:656–666PubMedCrossRefGoogle Scholar
  4. Andersson Rasmussen A, Kandasamy D, Beck H, Crosby SD, Björnberg O, Schnackerz KD, Piškur J (2014) Global expression analysis of the yeast Lachancea (Saccharomyces) kluyveri reveals new URC genes involved in pyrimidine catabolism. Eukaryot Cell 13:31–42PubMedPubMedCentralCrossRefGoogle Scholar
  5. André B, Jauniaux JC (1990) Nucleotide sequence of the yeast UGA1 gene encoding GABA transaminase. Nucleic Acids Res 18:3049PubMedPubMedCentralCrossRefGoogle Scholar
  6. Avendaño A, Deluna A, Olivera H, Valenzuela L, Gonzalez A (1997) GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae. J Bacteriol 179:5594–5597PubMedPubMedCentralCrossRefGoogle Scholar
  7. Avila J, Pérez MD, Brito N, González C, Siverio JM (1995) Cloning and disruption of the YNR1 gene encoding the nitrate reductase apoenzyme of the yeast Hansenula polymorpha. FEBS Lett 366:137–142PubMedCrossRefGoogle Scholar
  8. Bach B, Meudec E, Lepoutre JP, Rossignol T, Blondin B, Dequin S, Camarasa C (2009) New insights into γ-aminobutyric acid catabolism: evidence for γ-hydroxybutyric acid and polyhydroxybutyrate synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 75:4231–4239PubMedPubMedCentralCrossRefGoogle Scholar
  9. Beckerich JM, Lambert M, Gaillardin C (1994) LYC1 is the structural gene for lysine N-6-acetyl transferase in yeast. Curr Genet 25:24–29PubMedCrossRefGoogle Scholar
  10. Berg PC, Rodden FA (1976) Purification of D-amino acid oxidase from Trigonopsis variabilis. Anal Biochem 71:214–222PubMedCrossRefPubMedCentralGoogle Scholar
  11. Björnberg O, Vodnala M, Domkin V, Hofer A, Rasmussen A, Andersen G, Piškur J (2010) Ribosylurea accumulates in yeast urc4 mutants. Nucleosides Nucleotides Nucleic Acids 29:433–437PubMedCrossRefPubMedCentralGoogle Scholar
  12. Blandin G, Ozier-Kalogeropoulos O, Wincker P, Artiguenave F, Dujon B (2000) Genomic exploration of the hemiascomycetous yeasts: 16. Candida tropicalis. FEBS Lett 487:91–94PubMedCrossRefGoogle Scholar
  13. Böer E, Schröter A, Bode R, Piontek M, Kunze G (2009) Characterization and expression analysis of a gene cluster for nitrate assimilation from the yeast Arxula adeninivorans. Yeast 26:83–93PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bondar DC, Beckerich JM, Bonnarme P (2005) Involvement of a branched-chain aminotransferase in production of volatile sulfur compounds in Yarrowia lipolytica. Appl Environ Microbiol 71:4585–4591PubMedCrossRefGoogle Scholar
  15. Brady BL (1965) Utilization of amino compounds by yeasts of the genus Saccharomyces. Antonie Van Leeuwenhoek 31:95–102PubMedCrossRefPubMedCentralGoogle Scholar
  16. Brandriss MC, Falvey DA (1992) Proline biosynthesis in Saccharomyces cerevisiae: analysis of the PRO3 gene, which encodes Δ1-pyrroline-5-carboxylate reductase. J Bacteriol 174:3782–3788PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brandriss MC, Krzywicki KA (1986) Amino-terminal fragments of Δ1-pyrroline-5-carboxylate dehydrogenase direct β-galactosidase to the mitochondrial matrix in Saccharomyces cerevisiae. Mol Cell Biol 6:3502–3512PubMedPubMedCentralCrossRefGoogle Scholar
  18. Brandriss MC, Magasanik B (1979) Genetics and physiology of proline utilization in Saccharomyces cerevisiae: enzyme induction by proline. J Bacteriol 140:498–503PubMedPubMedCentralGoogle Scholar
  19. Brandriss MC, Magasanik B (1980) Proline: an essential intermediate in arginine degradation in Saccharomyces cerevisiae. J Bacteriol 143:1403–1410PubMedPubMedCentralGoogle Scholar
  20. Brandriss MC, Magasanik B (1981) Subcellular compartmentation in control of converging pathways for proline and arginine metabolism in Saccharomyces cerevisiae. J Bacteriol 145:1359–1364PubMedPubMedCentralGoogle Scholar
  21. Brewis EA, van Der Walt JP, Priora BA (1995) The utilization of aromatic, cyclic and heterocyclic nitriles by yeasts. Syst Appl Microbiol 18:338–342CrossRefGoogle Scholar
  22. Brito N, Avila J, Perez MD, Gonzalez C, Siverio JM (1996) The genes YNI1 and YNR1, encoding nitrite reductase and nitrate reductase respectively in the yeast Hansenula polymorpha, are clustered and co-ordinately regulated. Biochem J 317:89–95PubMedPubMedCentralCrossRefGoogle Scholar
  23. Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192:73–105PubMedPubMedCentralCrossRefGoogle Scholar
  24. Brouquisse R, Weigel P, Rhodes D, Yocum CF, Hanson AD (1989) Evidence for a ferredoxin-dependent choline monooxygenase from spinach chloroplast stroma. Plant Physiol 90:322–329PubMedPubMedCentralCrossRefGoogle Scholar
  25. Brunke S, Seider K, Richter ME, Bremer-Streck S, Ramachandra S, Kiehntopf M, Brock M, Hube B (2014) Histidine degradation via an aminotransferase increases the nutritional flexibility of Candida glabrata. Eukaryot Cell 13:758–765PubMedPubMedCentralCrossRefGoogle Scholar
  26. Buckholz RG, Cooper TG (1991) The allantoinase (DAL1) gene of Saccharomyces cerevisiae. Yeast 7:913–923PubMedCrossRefGoogle Scholar
  27. Cao J, Singh NK, Locy RD (2014) Characterization of the recombinant succinic semi-aldehyde dehydrogenase from Saccharomyces cerevisiae. Yeast 31:411–420PubMedCrossRefGoogle Scholar
  28. Carr RJ, Bilton RF, Atkinson T (1985) Mechanism of biodegradation of paraquat by Lipomyces starkeyi. Appl Environ Microbiol 49:1290–1294PubMedPubMedCentralGoogle Scholar
  29. Chang TH, Abelson J (1990) Identification of a putative amidase gene in yeast Saccharomyces cerevisiae. Nucleic Acids Res 18:7180PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chattopadhyay MK, Tabor CW, Tabor H (2003) Spermidine but not spermine is essential for hypusine biosynthesis and growth in Saccharomyces cerevisiae: spermine is converted to spermidine in vivo by the FMS1-amine oxidase. Proc Natl Acad Sci U S A 100:13869–13874PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chéret G, Pallier C, Valens M, Diagnan-Fornier B, Fukuhara H, Bolotin-Fukuhara M, Sor F (1993) The DNA sequence analysis of the HAP4-LAP4 region on chromosome XI of Saccharomyces cerevisiae suggests the presence of a second aspartate aminotransferase gene in yeast. Yeast 9:1259–1265PubMedCrossRefGoogle Scholar
  32. Choudary PV, Rao GR (1984) Molecular analysis of inorganic nitrogen assimilation in yeasts. Arch Microbiol 138:183–186CrossRefGoogle Scholar
  33. Choudary PV, Deobagkar DN, Rao GR (1986) Partial purification and properties of the assimilatory nitrate reductase of the food yeast Candida utilis. Microbios 47:135–147PubMedGoogle Scholar
  34. Coleman ST, Fang TK, Rovinsky SA, Turano FJ, Moye-Rowley WS (2001) Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J Biol Chem 276:244–250PubMedCrossRefGoogle Scholar
  35. Colón M, Hernández F, López K, Quezada H, González J, López G, Aranda C, González A (2011) Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme. PLoS One 6:e16099PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cooper TG (1982) Nitrogen metabolism in Saccharomyces cerevisiae. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 39–99Google Scholar
  37. Cooper TG (2002) Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev 26:223–238PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cooper TG, Gorski M, Turoscy V (1979) A cluster of three genes responsible for allantoin degradation in Saccharomyces cerevisiae. Genetics 92:383–396PubMedPubMedCentralGoogle Scholar
  39. Cooper TG, Lam C, Turoscy V (1980) Structural analysis of the dur loci in S. cerevisiae: two domains of a single multifunctional gene. Genetics 94:555–580PubMedPubMedCentralGoogle Scholar
  40. Corte ED, Stirpe F (1972) The regulation of rat liver xanthine oxidase. Involvement of thiol groups in the conversion of the enzyme activity from dehydrogenase (type D) into oxidase (type O) and purification of the enzyme. Biochem J 126:739–745PubMedPubMedCentralCrossRefGoogle Scholar
  41. Cultrone A, Scazzocchio C, Rochet M, Montero-Morán G, Drevet C, Fernández-Martín R (2005) Convergent evolution of hydroxylation mechanisms in the fungal kingdom: molybdenum cofactor-independent hydroxylation of xanthine via α-ketoglutarate-dependent dioxygenases. Mol Microbiol 57:276–290PubMedCrossRefGoogle Scholar
  42. Deeley MC (1992) Adenine deaminase and adenine utilization in Saccharomyces cerevisiae. J Bacteriol 174:3102–3110PubMedPubMedCentralCrossRefGoogle Scholar
  43. Degols G, Jauniaux JC, Wiame JM (1987) Molecular characterization of transposable-element-associated mutations that lead to constitutive L-ornithine aminotransferase expression in Saccharomyces cerevisiae. Eur J Biochem 165:289–296PubMedCrossRefGoogle Scholar
  44. DeLuna A, Avendano A, Riego L, Gonzalez A (2001) NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J Biol Chem 276:43775–43783PubMedCrossRefGoogle Scholar
  45. DeLuna A, Quezada H, Gómez-Puyou A, González A (2005) Asparaginyl deamidation in two glutamate dehydrogenase isoenzymes from Saccharomyces cerevisiae. Biochem Biophys Res Commun 328:1083–1090PubMedCrossRefGoogle Scholar
  46. Der Garabedian PA (1986) Candida δ-aminovalerate:α-ketoglutarate aminotransferase: purification and enzymologic properties. Biochemistry 25:5507–5512CrossRefGoogle Scholar
  47. Der Garabedian PA, Lotti AM, Vermeersch JJ (1986) 4-Aminobutyrate:2-oxoglutarate aminotransferase from Candida. Purification and properties. Eur J Biochem 156:589–596CrossRefGoogle Scholar
  48. Di Carlo FJ, Schultz AS, Kent AM (1952) On the mechanism of pyrimidine metabolism by yeasts. J Biol Chem 199:333–343Google Scholar
  49. Di Carlo FJ, Schultz AS, Kent AM (1953) The mechanism of allantoin catabolism by yeast. Arch Biochem Biophys 44:468–474CrossRefGoogle Scholar
  50. Dias JC, Rezende RP, Rosa CA, Lachance MA, Linardi VR (2000) Enzymatic degradation of nitriles by a Candida guilliermondii UFMG-Y65. Can J Microbiol 46:525–531PubMedCrossRefGoogle Scholar
  51. Dunlop PC, Roon RJ (1975) L-asparaginase of Saccharomyces cerevisiae: an extracellular enzyme. J Bacteriol 122:1017–1024PubMedPubMedCentralGoogle Scholar
  52. Dunlop PC, Roon RJ, Even HL (1976) Utilization of D-asparagine by Saccharomyces cerevisiae. J Bacteriol 125:999–1004PubMedPubMedCentralGoogle Scholar
  53. Eden A, Simchen G, Benvenisty N (1996) Two yeast homologs of ECA39, a target for c-Myc regulation, code for cytosolic and mitochondrial branched-chain amino acid aminotransferases. J Biol Chem 271:20242–20245PubMedCrossRefGoogle Scholar
  54. Erbs P, Exinger F, Jund R (1997) Characterization of the Saccharomyces cerevisiae FCY1 gene encoding cytosine deaminase and its homologue FCA1 of Candida albicans. Curr Genet 31:1–6PubMedCrossRefGoogle Scholar
  55. Faber KN, Keizer-Gunnink I, Pluim D, Harder W, Ab G, Veenhuis M (1994) The N-terminus of amine oxidase of Hansenula polymorpha contains a peroxisomal targeting signal. FEBS Lett 357:115–120CrossRefGoogle Scholar
  56. Fattakhova AN, Ofitserov EN, Garusov AV (1991) Cytochrome P-450-dependent catabolism of triethanolamine in Rhodotorula mucilaginosa. Biodegradation 2:107–113PubMedCrossRefGoogle Scholar
  57. Filetici P, Martegani MP, Valenzuela L, González A, Ballario P (1996) Sequence of the GLT1 gene from Saccharomyces cerevisiae reveals the domain structure of yeast glutamate synthase. Yeast 12:1359–1366PubMedCrossRefGoogle Scholar
  58. Fitzpatrick DA, Logue ME, Butler G (2008) Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis. BMC Evol Biol 8:181PubMedPubMedCentralCrossRefGoogle Scholar
  59. Folch JL, Antaramián A, Rodríguez L, Bravo A, Brunner A, González A (1989) Isolation and characterization of a Saccharomyces cerevisiae mutant with impaired glutamate synthase activity. J Bacteriol 171:6776–6781PubMedPubMedCentralCrossRefGoogle Scholar
  60. Gaillardin C, Fournier P, Sylvestre G, Heslot H (1976) Mutants of Saccharomycopsis lipolytica defective in lysine catabolism. J Bacteriol 125:48–57PubMedPubMedCentralGoogle Scholar
  61. Ganguly S, Mummaneni P, Steinbach PJ, Klein DC, Coon SL (2001) Characterization of the Saccharomyces cerevisiae homolog of the melatonin rhythm enzyme arylalkylamine N-acetyltransferase (EC 2.3.1.87). J Biol Chem 276:47239–47247PubMedCrossRefGoogle Scholar
  62. Ganter PF (2006) Yeast and invertebrate associations. In: Péter G, Rosa C (eds) Biodiversity and Ecophysiology of Yeasts. The Yeast handbook. Springer, Berlin/Heidelberg, pp 303–370CrossRefGoogle Scholar
  63. García-Campusano F, Anaya VH, Robledo-Arratia L, Quezada H, Hernández H, Riego L, González A (2009) ALT1-encoded alanine aminotransferase plays a central role in the metabolism of alanine in Saccharomyces cerevisiae. Can J Microbiol 55:368–374PubMedCrossRefGoogle Scholar
  64. García-Lugo P, González C, Perdomo G, Brito N, Avila J, de La Rosa JM, Siverio JM (2000) Cloning, sequencing, and expression of H.a.YNR1 and H.a.YNI1, encoding nitrate and nitrite reductases in the yeast Hansenula anomala. Yeast 16:1099–1105PubMedCrossRefGoogle Scholar
  65. Gillyon C, Haywood GW, Large PJ, Nellen B, Robertson A (1987) Putrescine breakdown in the yeast Candida boidini: subcellular location of some of the enzymes involved and properties of two acetamidoaldehyde dehydrogenases. J Gen Microbiol 133:2477–2485Google Scholar
  66. Gojković Z, Jahnke K, Schnackerz KD, Piškur J (2000) PYD2 encodes 5,6-dihydropyrimidine amidohydrolase, which participates in a novel fungal catabolic pathway. J Mol Biol 295:1073–1087PubMedCrossRefGoogle Scholar
  67. Gojković Z, Sandrini MP, Piškur J (2001) Eukaryotic β-alanine synthases are functionally related but have a high degree of structural diversity. Genetics 158:999–1011PubMedPubMedCentralGoogle Scholar
  68. González FJ, Montes J, Martin F, López MC, Fermiñán E, Catalán J, Galán MA, Domínguez A (1997) Molecular cloning of TvDAO1, a gene encoding a D-amino acid oxidase from Trigonopsis variabilis and its expression in Saccharomyces cerevisiae and Kluyveromyces lactis. Yeast 13:1399–1408PubMedCrossRefGoogle Scholar
  69. Green J, Large PJ (1983) Oxidation of dimethylamine and trimethylamine in methazotrophic yeasts by microsomal mono-oxygenases sensitive to carbon monoxide. Biochem Biophys Res Commun 113:900–907PubMedCrossRefGoogle Scholar
  70. Green J, Large PJ (1984) Subcellular localization and properties of partially purified dimethylamine and trimethylamine mono-oxygenase activities in Candida utilis. J Gen Microbiol 130:2577–2588PubMedGoogle Scholar
  71. Green J, Haywood GW, Large PJ (1982) More than one amine oxidase is involved in the metabolism of primary amines supplied as nitrogen source. J Gen Microbiol 128:991–996Google Scholar
  72. Green J, Haywood GW, Large PJ (1983) Serological differences between the multiple amine oxidases of yeasts and comparison of the specificities of the purified enzymes from Candida utilis and Pichia pastoris. Biochem J 211:481–493PubMedPubMedCentralCrossRefGoogle Scholar
  73. Gromes R, Schwartz H, Heinrich M, Johannssen W (1991) Nitrate reductase from yeast: cultivation, partial purification and characterization. Appl Microbiol Biotechnol 35:491–495CrossRefGoogle Scholar
  74. Gunasekaran M, Gunasekaran U (1999) Partial purification and properties of putrescine oxidase from Candida guilliermondii. Appl Biochem Biotechnol 76:229–336PubMedCrossRefGoogle Scholar
  75. Hachimori A, Ito M, Samejima T (1974) Some properties of glutamine synthetase from baker’s yeast. J Biochem 76:1075–1081PubMedGoogle Scholar
  76. Hall DA (1952) Histidine α-deaminase and the production of urocanic acid in the mammal. Biochem J 51:499–504PubMedPubMedCentralCrossRefGoogle Scholar
  77. Hammer T, Bode R (1992) Purification and characterization of an inducible L-lysine: 2-oxoglutarate 6-aminotransferase from Candida utilis. J Basic Microbiol 32:21–27PubMedCrossRefGoogle Scholar
  78. Hammer T, Bode R, Schmidt H, Birnbaum D (1991a) Distribution of three lysine-catabolizing enzymes in various yeast species. J Basic Microbiol 31:43–49CrossRefGoogle Scholar
  79. Hammer T, Bode R, Birnbaum D (1991b) Occurrence of a novel yeast enzyme, L-lysine ε-dehydrogenase, which catalyses the first step of lysine catabolism in Candida albicans. Microbiology 137:711–715Google Scholar
  80. Hanson AD, Pribat A, Waller JC, de Crécy-Lagard V (2009) ‘Unknown’ proteins and ‘orphan’ enzymes: the missing half of the engineering parts list – and how to find it. Biochem J 425:1–11PubMedPubMedCentralCrossRefGoogle Scholar
  81. Hartzog PE, Nicholson BP, McCusker JH (2005) Cytosine deaminase MX cassettes as positive/negative selectable markers in Saccharomyces cerevisiae. Yeast 22:789–798PubMedCrossRefGoogle Scholar
  82. Hata S, Shirata K, Takagishi H (1986) Degradation of paraquat and diquat by the yeast Lipomyces starkeyi. J Gen Appl Microbiol 32:193–202CrossRefGoogle Scholar
  83. Haywood GW, Large PJ (1981) Microbial oxidation of amines. Distribution, purification and properties of two primary-amine oxidases from the yeast Candida boidinii grown on amines as sole nitrogen source. Biochem J 199:187–201PubMedPubMedCentralCrossRefGoogle Scholar
  84. Haywood GW, Large PJ (1985) The occurrence, subcellular localization and partial purification of diamine acetyltransferase in the yeast Candida boidinii grown on spermidine or putrescine as sole nitrogen source. Eur J Biochem 148:277–283PubMedCrossRefGoogle Scholar
  85. Haywood GW, Large PJ (1986) 4-acetamidobutyrate deacetylase in the yeast Candida boidinii grown on putrescine or spermidine as sole nitrogen source and its probable role in polyamine catabolism. J Gen Microbiol 132:7–14Google Scholar
  86. Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266PubMedPubMedCentralCrossRefGoogle Scholar
  87. Hemmings BA (1980) Purification and properties of the phospho and dephospho forms of yeast NAD-dependent glutamate dehydrogenase. J Biol Chem 255:7925–7932PubMedGoogle Scholar
  88. Hipkin CR, Kau DA, Cannons AC (1993) Further characterization of the assimilatory nitrate reductase from the yeast Candida nitratophila. J Gen Microbiol 139:473–478PubMedCrossRefGoogle Scholar
  89. Holmes AR, McNaughton GS, More RD, Shepherd MG (1991) Ammonium assimilation by Candida albicans and other yeasts: a 13N isotope study. Can J Microbiol 37:226–232PubMedCrossRefGoogle Scholar
  90. Iraqui I, Vissers S, Cartiaux M, Urrestarazu A (1998) Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily. Mol Gen Genet 257:238–248PubMedCrossRefGoogle Scholar
  91. Ito T, Hemmi H, Kataoka K, Mukai Y, Yoshimura T (2008) A novel zinc-dependent D-serine dehydratase from Saccharomyces cerevisiae. Biochem J 409:399–406PubMedCrossRefGoogle Scholar
  92. Jankowska DA, Trautwein-Schult A, Cordes A, Hoferichter P, Klein C, Bode R, Baronian K, Kunze G (2013) Arxula adeninivorans xanthine oxidoreductase and its application in the production of food with low purine content. J Appl Microbiol 115:796–807PubMedCrossRefGoogle Scholar
  93. Jauniaux JC, Urrestarazu LA, Wiame JM (1978) Arginine metabolism in Saccharomyces cerevisiae: subcellular localization of the enzymes. J Bacteriol 133:1096–1107PubMedPubMedCentralGoogle Scholar
  94. Jauniaux JC, Dubois E, Vissers S, Crabeel M, Wiame JM (1982) Molecular cloning, DNA structure, and RNA analysis of the arginase gene in Saccharomyces cerevisiae. A study of cis-dominant regulatory mutations. EMBO J 1:1125–1131PubMedPubMedCentralCrossRefGoogle Scholar
  95. Jones GE, Mortimer RK (1973) Biochemical properties of yeast L-asparaginase. Biochem Genet 9:131–146PubMedCrossRefGoogle Scholar
  96. Kay CJ, Barber MJ, Solomonson LP, Kau D, Cannons AC, Hipkin CR (1990) Spectroscopic, thermodynamic and kinetic properties of Candida nitratophila nitrate reductase. Biochem J 272:545–548PubMedPubMedCentralCrossRefGoogle Scholar
  97. Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–624PubMedCrossRefGoogle Scholar
  98. Kim KW, Kamerud JQ, Livingston DM, Roon RJ (1988) Asparaginase II of Saccharomyces cerevisiae. Characterization of the ASP3 gene. J Biol Chem 263:11948–11953PubMedGoogle Scholar
  99. Kispal G, Steiner H, Court DA, Rolinski B, Lill R (1996) Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogene-regulated Eca39 protein. J Biol Chem 271:24458–24464PubMedCrossRefGoogle Scholar
  100. Klompmaker SH, Kilic A, Baerends RJ, Veenhuis M, van der Klei IJ (2010) Activation of a peroxisomal Pichia pastoris D-amino acid oxidase, which uses D-alanine as a preferred substrate, depends on pyruvate carboxylase. FEMS Yeast Res 10:708–716PubMedCrossRefGoogle Scholar
  101. Koyama Y, Ichikawa T, Nakano E (1996) Cloning, sequence analysis, and expression in Escherichia coli of the gene encoding the Candida utilis urate oxidase (uricase). J Biochem 120:969–973PubMedCrossRefGoogle Scholar
  102. Kradolfer P, Niederberger P, Hütter R (1982) Tryptophan degradation in Saccharomyces cerevisiae: characterization of two aromatic aminotransferases. Arch Microbiol 133:242–248PubMedCrossRefGoogle Scholar
  103. Krassowski T, Coughlan AY, Shen XX, Zhou X, Kominek J, Opulente DA, Riley R, Grigoriev IV, Maheshwari N, Shields DC, Kurtzman CP, Hittinger CT, Rokas A, Wolfe KH (2018) Evolutionary instability of CUG-Leu in the genetic code of budding yeasts. Nat Commun 9:1887PubMedPubMedCentralCrossRefGoogle Scholar
  104. Krzywicki KA, Brandriss MC (1984) Primary structure of the nuclear PUT2 gene involved in the mitochondrial pathway for proline utilization in Saccharomyces cerevisiae. Mol Cell Biol 4:2837–2842PubMedPubMedCentralCrossRefGoogle Scholar
  105. Kucha JA, Dooley DM (2001) Cloning, sequence analysis, and characterization of the ‘lysyl oxidase’ from Pichia pastoris. J Inorg Biochem 83:193–204PubMedCrossRefGoogle Scholar
  106. Lacerda VA, Marsden A, Ledingham WM (1992) Ammonia utilization in S. cerevisiae under chemostatic growth. Appl Biochem Biotechnol 32:15–21PubMedCrossRefGoogle Scholar
  107. Lambou K, Pennati A, Valsecchi I, Tada R, Sherman S, Sato H, Beau R, Gadda G, Latgé JP (2013) Pathway of glycine betaine biosynthesis in Aspergillus fumigatus. Eukaryot Cell 12:853–863PubMedPubMedCentralCrossRefGoogle Scholar
  108. Landry J, Sternglanz R (2003) Yeast Fms1 is a FAD-utilizing polyamine oxidase. Biochem Biophys Res Commun 303:771–776PubMedCrossRefGoogle Scholar
  109. Large PJ (1986) Degradation of organic nitrogen compounds by yeasts. Yeast 2:1–34CrossRefGoogle Scholar
  110. Large PJ, Robertson A (1988) The subcellular location of 4-aminobutyrate aminotransferase in Candida boidinii and its probable role in the breakdown of putrescine and spermidine. Yeast 4:149–153CrossRefGoogle Scholar
  111. Large PJ, Robertson A (1991) The route of lysine breakdown in Candida tropicalis. FEMS Microbiol Lett 66:209–213PubMedCrossRefGoogle Scholar
  112. Large PJ, Waterham HR, Veenhuis M (1990) Subcellular location of the enzymes of purine breakdown in the yeast Candida famata grown on uric acid. FEMS Microbiol Lett 72:303–307CrossRefGoogle Scholar
  113. LaRue TA, Spencer JF (1967a) The utilization of D-amino acid by yeast. Can J Microbiol 13:777–788PubMedCrossRefGoogle Scholar
  114. LaRue TA, Spencer JFT (1967b) The utilization of imidazoles by yeasts. Can J Microbiol 13:789–794PubMedCrossRefGoogle Scholar
  115. LaRue TA, Spencer JF (1968) The utilization of purines and pyrimidines by yeasts. Can J Microbiol 14:79–86PubMedCrossRefGoogle Scholar
  116. Lawther RP, Riemer E, Chojnacki B, Cooper TG (1974) Clustering of the genes for allantoin degradation in Saccharomyces cerevisiae. J Bacteriol 119:461–468PubMedPubMedCentralGoogle Scholar
  117. League GP, Slot JC, Rokas A (2012) The ASP3 locus in Saccharomyces cerevisiae originated by horizontal gene transfer from Wickerhamomyces. FEMS Yeast Res 12:859–863PubMedCrossRefGoogle Scholar
  118. Lee IR, Yang L, Sebetso G, Allen R, Doan TH, Blundell R, Lui EY, Morrow CA, Fraser JA (2013) Characterization of the complete uric acid degradation pathway in the fungal pathogen Cryptococcus neoformans. PLoS One 8:e64292PubMedPubMedCentralCrossRefGoogle Scholar
  119. Linardi VR, Dias JCT, Rosa CA (1996) Utilization of acetonitrile and other aliphatic nitriles by a Candida famata strain. FEMS Microbiol Lett 144:67–71PubMedCrossRefGoogle Scholar
  120. Linder T (2014) CMO1 encodes a putative choline monooxygenase and is required for the utilization of choline as the sole nitrogen source in the yeast Scheffersomyces stipitis (syn. Pichia stipitis). Microbiology 160:929–940PubMedCrossRefGoogle Scholar
  121. Linder T (2018) Genetic redundancy in the catabolism of methylated amines in the yeast Scheffersomyces stipitis. Antonie Van Leeuwenhoek 111:401–411PubMedCrossRefGoogle Scholar
  122. Linder T (2019a) A genomic survey of nitrogen assimilation pathways in budding yeasts (sub-phylum Saccharomycotina). Yeast.  https://doi.org/10.1002/yea.3364PubMedCrossRefGoogle Scholar
  123. Linder T (2019b) Phenotypical characterisation of a putative ω-amino acid transaminase in the yeast Scheffersomyces stipitis. Arch Microbiol 201:185–192PubMedPubMedCentralCrossRefGoogle Scholar
  124. Liu B, Sutton A, Sternglanz R (2005) A yeast polyamine acetyltransferase. J Biol Chem 280:16659–16664PubMedCrossRefGoogle Scholar
  125. Ljungdahl PO (2009) Amino-acid-induced signalling via the SPS-sensing pathway in yeast. Biochem Soc Trans 37:242–247PubMedCrossRefGoogle Scholar
  126. Lohkamp B, Andersen B, Piškur J, Dobritzsch D (2006) The crystal structures of dihydropyrimidinases reaffirm the close relationship between cyclic amidohydrolases and explain their substrate specificity. J Biol Chem 281:13762–13776PubMedCrossRefGoogle Scholar
  127. Magasanik B (2003) Ammonia assimilation by Saccharomyces cerevisiae. Eukaryot Cell 2:827–829PubMedPubMedCentralCrossRefGoogle Scholar
  128. Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1–18PubMedCrossRefGoogle Scholar
  129. Martin E, Varotto Boccazzi I, De Marco L, Bongiorno G, Montagna M, Sacchi L, Mensah P, Ricci I, Gradoni L, Bandi C, Epis S (2018) The mycobiota of the sand fly Phlebotomus perniciosus: involvement of yeast symbionts in uric acid metabolism. Environ Microbiol 20:1064–1077PubMedCrossRefPubMedCentralGoogle Scholar
  130. McNeil JB, McIntosh EM, Taylor BV, Zhang FR, Tang S, Bognar AL (1994) Cloning and molecular characterization of three genes, including two genes encoding serine hydroxymethyltransferases, whose inactivation is required to render yeast auxotrophic for glycine. J Biol Chem 269:9155–9165PubMedGoogle Scholar
  131. McNeil JB, Zhang F, Taylor BV, Sinclair DA, Pearlman RE, Bognar AL (1997) Cloning, and molecular characterization of the GCV1 gene encoding the glycine cleavage T-protein from Saccharomyces cerevisiae. Gene 186:13–20PubMedCrossRefGoogle Scholar
  132. Messenguy F, André B, Dubois E (2006) Diversity of nitrogen metabolism among yeast species: regulatory and evolutionary aspects. In: Péter G, Rosa C (eds) Biodiversity and Ecophysiology of Yeasts. The Yeast handbook. Springer, Berlin/Heidelberg, pp 123–153CrossRefGoogle Scholar
  133. Middelhoven WJ (1964) The pathway of arginine breakdown in Saccharomyces cerevisiae. Biochim Biophys Acta 93:650–652PubMedCrossRefGoogle Scholar
  134. Middelhoven WJ, van Doesburg W (2007) Utilization of hexamethylenetetramine (urotropine) by bacteria and yeasts. Antonie Van Leeuwenhoek 91:191–196PubMedCrossRefGoogle Scholar
  135. Middelhoven WJ, van Eijk J, van Renesse R, Blijham JM (1978) A mutant of Saccharomyces cerevisiae lacking catabolic NAD-specific glutamate dehydrogenase. Growth characteristics of the mutant and regulation of enzyme synthesis in the wild-type strain. Antonie Van Leeuwenhoek 44:311–320PubMedCrossRefGoogle Scholar
  136. Middelhoven WJ, de Jong IM, de Winter M (1991) Arxula adeninivorans, a yeast assimilating many nitrogenous and aromatic compounds. Antonie Van Leeuwenhoek 59:129–137PubMedCrossRefGoogle Scholar
  137. Miller SM, Magasanik B (1990) Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J Bacteriol 172:4927–4935PubMedPubMedCentralCrossRefGoogle Scholar
  138. Minehart PL, Magasanik B (1992) Sequence of the GLN1 gene of Saccharomyces cerevisiae: role of the upstream region in regulation of glutamine synthetase expression. J Bacteriol 174:1828–1836PubMedPubMedCentralCrossRefGoogle Scholar
  139. Mira-Gutiérrez J, Garcia-Martos P, Mira-Gordillo AJ (1995) Identification of yeasts by hydrolysis of amides. Mycoses 38:101–106PubMedCrossRefGoogle Scholar
  140. Mitchell AP (1985) The GLN1 locus of Saccharomyces cerevisiae encodes glutamine synthetase. Genetics 111:243–258PubMedPubMedCentralGoogle Scholar
  141. Montalvo-Arredondo J, Jiménez-Benítez Á, Colón-González M, González-Flores J, Flores-Villegas M, González A, Riego-Ruiz L (2015) Functional roles of a predicted branched chain aminotransferase encoded by the LkBAT1 gene of the yeast Lachancea kluyveri. Fungal Genet Biol 85:71–82PubMedCrossRefGoogle Scholar
  142. Montero-Morán GM, Li M, Rendòn-Huerta E, Jourdan F, Lowe DJ, Stumpff-Kane AW, Feig M, Scazzocchio C, Hausinger RP (2007) Purification and characterization of the FeII- and α-ketoglutarate-dependent xanthine hydroxylase from Aspergillus nidulans. Biochemistry 46:5293–5304PubMedPubMedCentralCrossRefGoogle Scholar
  143. Mori N, Shirakawa K, Uzura K, Kitamoto Y, Ichikawa Y (1988) Formation of ethylene-glycol and trimethylamine from choline by Candida tropicalis. FEMS Microbiol Lett 51:41–44CrossRefGoogle Scholar
  144. Morin PJ, Subramanian GS, Gilmore TD (1992) AAT1, a gene encoding a mitochondrial aspartate aminotransferase in Saccharomyces cerevisiae. Biochim Biophys Acta 1171:211–214PubMedCrossRefGoogle Scholar
  145. Moye WS, Amuro N, Rao JK, Zalkin H (1985) Nucleotide sequence of yeast GDH1 encoding nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase. J Biol Chem 260:8502–8508PubMedGoogle Scholar
  146. Nagarajan L, Storms RK (1997) Molecular characterization of GCV3, the Saccharomyces cerevisiae gene coding for the glycine cleavage system hydrogen carrier protein. J Biol Chem 272:4444–4450PubMedCrossRefGoogle Scholar
  147. Nagasu T, Hall BD (1985) Nucleotide sequence of the GDH gene coding for the NADP-specific glutamate dehydrogenase of Saccharomyces cerevisiae. Gene 37:247–253PubMedCrossRefGoogle Scholar
  148. Navarathna DH, Harris SD, Roberts DD, Nickerson KW (2010) Evolutionary aspects of urea utilization by fungi. FEMS Yeast Res 10:209–213PubMedPubMedCentralCrossRefGoogle Scholar
  149. Nishimura K, Yamamoto M, Nakagomi T, Takiguchi Y, Naganuma T, Uzuka Y (2002) Biodegradation of triazine herbicides on polyvinylalcohol gel plates by the soil yeast Lipomyces starkeyi. Appl Microbiol Biotechnol 58:848–852PubMedCrossRefGoogle Scholar
  150. Nolan LM, Harnedy PA, Turner P, Hearne AB, O’Reilly C (2003) The cyanide hydratase enzyme of Fusarium lateritium also has nitrilase activity. FEMS Microbiol Lett 221:161–165PubMedCrossRefGoogle Scholar
  151. Norkrans B (1969) Hydroxylamine as the sole nitrogen source for growth of some Candida sp. Acta Chem Scand 23:1457–1459PubMedCrossRefGoogle Scholar
  152. Okumura I, Yamamoto T (1978) Enzymic racemization of allantoin. J Biochem 84:891–895PubMedCrossRefGoogle Scholar
  153. Okumura I, Kondo K, Miyake Y, Itaya K, Yamamoto T (1976) Stereospecificity of conversion of uric acid into allantoic acid by enzymes of Candida utilis. J Biochem 79:1013–1019PubMedCrossRefGoogle Scholar
  154. Peñalosa-Ruiz G, Aranda C, Ongay-Larios L, Colon M, Quezada H, Gonzalez A (2012) Paralogous ALT1 and ALT2 retention and diversification have generated catalytically active and inactive aminotransferases in Saccharomyces cerevisiae. PLoS One 7:e45702PubMedPubMedCentralCrossRefGoogle Scholar
  155. Petersen JG, Kielland-Brandt MC, Nilsson-Tillgren T, Bornaes C, Holmberg S (1988) Molecular genetics of serine and threonine catabolism in Saccharomyces cerevisiae. Genetics 119:527–534PubMedPubMedCentralGoogle Scholar
  156. Pignocchi C, Berardi E, Cox BS (1998) Nitrate reduction and the isolation of Nit- mutants in Hansenula polymorpha. Microbiology 144:2323–2330PubMedCrossRefGoogle Scholar
  157. Prasad S, Sharma DR, Bhalla TC (2005) Nitrile- and amide-hydrolysing activity in Kluyveromyces thermotolerans MGBY 37. World J Microbiol Biotechnol 21:1447–1450CrossRefGoogle Scholar
  158. Ramazzina I, Folli C, Secchi A, Berni R, Percudani R (2006) Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes. Nat Chem Biol 2:144–148PubMedCrossRefGoogle Scholar
  159. Ramos F, el Guezzar M, Grenson M, Wiame JM (1985) Mutations affecting the enzymes involved in the utilization of 4-aminobutyric acid as nitrogen source by the yeast Saccharomyces cerevisiae. Eur J Biochem 149:401–404PubMedCrossRefGoogle Scholar
  160. Rezende RP, Dias JC, Rosa CA, Carazza F, Linardi VR (1999) Utilization of nitriles by yeasts isolated from a Brazilian gold mine. J Gen Appl Microbiol 45:185–192PubMedCrossRefPubMedCentralGoogle Scholar
  161. Romagnoli G, Verhoeven MD, Mans R, Fleury Rey Y, Bel-Rhlid R, van den Broek M, Seifar RM, Ten Pierick A, Thompson M, Müller V, Wahl SA, Pronk JT, Daran JM (2014) An alternative, arginase-independent pathway for arginine metabolism in Kluyveromyces lactis involves guanidinobutyrase as a key enzyme. Mol Microbiol 93:369–389PubMedPubMedCentralCrossRefGoogle Scholar
  162. Roon RJ, Even HL (1973) Regulation of the nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenases of Saccharomyces cerevisiae. J Bacteriol 116:367–372PubMedPubMedCentralGoogle Scholar
  163. Roon RJ, Levenberg B (1972) Urea amidolyase. I. Properties of the enzyme from Candida utilis. J Biol Chem 247:4107–4113PubMedGoogle Scholar
  164. Roon RJ, Even HL, Larimore F (1974) Glutamate synthase: properties of the reduced nicotinamide adenine dinucleotide-dependent enzyme from Saccharomyces cerevisiae. J Bacteriol 118:89–95PubMedPubMedCentralGoogle Scholar
  165. Ross J, Reid GA, Dawes IW (1988) The nucleotide sequence of the LPD1 gene encoding lipoamide dehydrogenase in Saccharomyces cerevisiae: comparison between eukaryotic and prokaryotic sequences for related enzymes and identification of potential upstream control sites. J Gen Microbiol 134:1131–1139PubMedGoogle Scholar
  166. Rothstein M (1965) Intermediates of lysine dissimilation in the yeast, Hansenula saturnus. Arch Biochem Biophys 111:467–476PubMedCrossRefGoogle Scholar
  167. Rząd K, Milewski S, Gabriel I (2018) Versatility of putative aromatic aminotransferases from Candida albicans. Fungal Genet Biol 110:26–37PubMedCrossRefGoogle Scholar
  168. Sadowsky MJ, Koskinen WC, Bischoff M, Barber BL, Becker JM, Turco RF (2009) Rapid and complete degradation of the herbicide picloram by Lipomyces kononenkoae. J Agric Food Chem 57:4878–4882PubMedCrossRefGoogle Scholar
  169. Saint-Marc C, Daignan-Fornier B (2004) GUD1 (YDL238c) encodes Saccharomyces cerevisiae guanine deaminase, an enzyme expressed during post-diauxic growth. Yeast 21:1359–1363PubMedCrossRefGoogle Scholar
  170. Sampath V, Liu B, Tafrov S, Srinivasan M, Rieger R, Chen EI, Sternglanz R (2013) Biochemical characterization of Hpa2 and Hpa3, two small closely related acetyltransferases from Saccharomyces cerevisiae. J Biol Chem 288:21506–21513PubMedPubMedCentralCrossRefGoogle Scholar
  171. Schmidt H, Bode R (1992) Characterization of a novel enzyme, N6-acetyl-L-lysine: 2-oxoglutarate aminotransferase, which catalyses the second step of lysine catabolism in Candida maltosa. Antonie Van Leeuwenhoek 62:285–290PubMedCrossRefGoogle Scholar
  172. Schmidt H, Bode R, Birnbaum D (1988a) A novel enzyme, L-lysine pyruvate aminotransferase, catalyses the first step of lysine catabolism in Pichia guilliermondii. FEMS Microbiol Lett 49:203–206Google Scholar
  173. Schmidt H, Bode R, Birnbaum D (1988b) Lysine degradation in Candida maltosa: occurrence of a novel enzyme, acetyl-CoA: L-lysine N-acetyltransferase. Arch Microbiol 150:215–218CrossRefGoogle Scholar
  174. Schnackerz KD, Andersen G, Dobritzsch D, Piškur J (2008) Degradation of pyrimidines in Saccharomyces kluyveri: transamination of beta-alanine. Nucleosides Nucleotides Nucleic Acids 27:794–799PubMedCrossRefGoogle Scholar
  175. Sengupta S, Shaila MS, Rao GR (1996) Purification and characterization of assimilatory nitrite reductase from Candida utilis. Biochem J 317:147–155PubMedPubMedCentralCrossRefGoogle Scholar
  176. Shaw AJ, Lam FH, Hamilton M, Consiglio A, MacEwen K, Brevnova EE, Greenhagen E, LaTouf WG, South CR, van Dijken H, Stephanopoulos G (2016) Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science 353:583–586PubMedCrossRefGoogle Scholar
  177. Shen XX, Zhou X, Kominek J, Kurtzman CP, Hittinger CT, Rokas A (2016) Reconstructing the backbone of the Saccharomycotina yeast phylogeny using genome-scale data. G3 6:3927–3939PubMedCrossRefGoogle Scholar
  178. Shen XX, Opulente DA, Kominek J, Zhou X, Steenwyk JL, Buh KV, Haase MAB, Wisecaver JH, Wang M, Doering DT, Boudouris JT, Schneider RM, Langdon QK, Ohkuma M, Endoh R, Takashima M, Manabe RI, Čadež N, Libkind D, Rosa CA, DeVirgilio J, Hulfachor AB, Groenewald M, Kurtzman CP, Hittinger CT, Rokas A (2018) Tempo and mode of genome evolution in the budding yeast subphylum. Cell 175:1533–1545PubMedCrossRefGoogle Scholar
  179. Shepherd A, Piper PW (2010) The Fps1p aquaglyceroporin facilitates the use of small aliphatic amides as a nitrogen source by amidase-expressing yeasts. FEMS Yeast Res 10:527–534PubMedGoogle Scholar
  180. Shiraishi K, Oku M, Kawaguchi K, Uchida D, Yurimoto H, Sakai Y (2015) Yeast nitrogen utilization in the phyllosphere during plant lifespan under regulation of autophagy. Sci Rep 5:9719PubMedPubMedCentralCrossRefGoogle Scholar
  181. Sinclair DA, Dawes IW (1995) Genetics of the synthesis of serine from glycine and the utilization of glycine as sole nitrogen source by Saccharomyces cerevisiae. Genetics 140:1213–1222PubMedPubMedCentralGoogle Scholar
  182. Sinclair K, Warner JP, Bonthron DT (1994) The ASP1 gene of Saccharomyces cerevisiae, encoding the intracellular isozyme of L-asparaginase. Gene 144:37–43PubMedCrossRefGoogle Scholar
  183. Sinclair DA, Hong SP, Dawes IW (1996) Specific induction by glycine of the gene for the P-subunit of glycine decarboxylase from Saccharomyces cerevisiae. Mol Microbiol 19:611–623PubMedCrossRefGoogle Scholar
  184. Solis-Escalante D, Kuijpers NG, Bongaerts N, Bolat I, Bosman L, Pronk JT, Daran JM, Daran-Lapujade P (2013) amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Res 13:126–139PubMedCrossRefGoogle Scholar
  185. Suh SO, Marshall CJ, McHugh JV, Blackwell M (2003) Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol Ecol 12:3137–3145PubMedCrossRefGoogle Scholar
  186. Suh SO, McHugh JV, Pollock DD, Blackwell M (2005) The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 109:261–265PubMedPubMedCentralCrossRefGoogle Scholar
  187. Sumrada RA, Cooper TG (1982a) Urea carboxylase and allophanate hydrolase are components of a multifunctional protein in yeast. J Biol Chem 257:9119–9127PubMedGoogle Scholar
  188. Sumrada RA, Cooper TG (1982b) Isolation of the CAR1 gene from Saccharomyces cerevisiae and analysis of its expression. Mol Cell Biol 2:1514–1523PubMedPubMedCentralCrossRefGoogle Scholar
  189. Sumrada RA, Cooper TG (1984) Nucleotide sequence of the Saccharomyces cerevisiae arginase gene (CAR1) and its transcription under various physiological conditions. J Bacteriol 160:1078–1087PubMedPubMedCentralGoogle Scholar
  190. Truong HN, Meyer C, Daniel-Vedele F (1991) Characteristics of Nicotiana tabacum nitrate reductase protein produced in Saccharomyces cerevisiae. Biochem J 278:393–397PubMedPubMedCentralCrossRefGoogle Scholar
  191. Tur SS, Lerch K (1988) Unprecedented lysyloxidase activity of Pichia pastoris benzylamine oxidase. FEBS Lett 238:74–76PubMedCrossRefGoogle Scholar
  192. Urrestarazu A, Vissers S, Iraqui I, Grenson M (1998) Phenylalanine- and tyrosine-auxotrophic mutants of Saccharomyces cerevisiae impaired in transamination. Mol Gen Genet 257:230–237PubMedCrossRefGoogle Scholar
  193. van der Walt JP (1962) Utilization of ethylamine by yeasts. Antonie Van Leeuwenhoek 28:91–96PubMedCrossRefGoogle Scholar
  194. van Dijken JP, Bos P (1981) Utilization of amines by yeasts. Arch Microbiol 128:320–324PubMedCrossRefGoogle Scholar
  195. Verleur N, Elgersma Y, Van Roermund CW, Tabak HF, Wanders RJ (1997) Cytosolic aspartate aminotransferase encoded by the AAT2 gene is targeted to the peroxisomes in oleate-grown Saccharomyces cerevisiae. Eur J Biochem 247:972–980PubMedCrossRefGoogle Scholar
  196. Vigliotta G, Di Giacomo M, Carata E, Massardo DR, Tredici SM, Silvestro D, Paolino M, Pontieri P, Del Giudice L, Parente D, Alifano P (2007) Nitrite metabolism in Debaryomyces hansenii TOB-Y7, a yeast strain involved in tobacco fermentation. Appl Microbiol Biotechnol 75:633–645PubMedCrossRefGoogle Scholar
  197. Villas-Bôas SG, Åkesson M, Nielsen J (2005) Biosynthesis of glyoxylate from glycine in Saccharomyces cerevisiae. FEMS Yeast Res 5:703–709PubMedCrossRefGoogle Scholar
  198. Wang SS, Brandriss MC (1986) Proline utilization in Saccharomyces cerevisiae: analysis of the cloned PUT1 gene. Mol Cell Biol 6:2638–2645PubMedPubMedCentralCrossRefGoogle Scholar
  199. Wang SS, Brandriss MC (1987) Proline utilization in Saccharomyces cerevisiae: sequence, regulation, and mitochondrial localization of the PUT1 gene product. Mol Cell Biol 7:4431–4440PubMedPubMedCentralCrossRefGoogle Scholar
  200. Wang P, van Etten HD (1992) Cloning and properties of a cyanide hydratase gene from the phytopathogenic fungus Gloeocercospora sorghi. Biochem Biophys Res Commun 187:1048–1054PubMedCrossRefGoogle Scholar
  201. Wang D, Zheng G, Wang S, Zhang D, Zhou L (2011) Biodegradation of aniline by Candida tropicalis AN1 isolated from aerobic granular sludge. J Environ Sci 23:2063–2068CrossRefGoogle Scholar
  202. White WH, Skatrud PL, Xue Z, Toyn JH (2003) Specialization of function among aldehyde dehydrogenases: the ALD2 and ALD3 genes are required for β-alanine biosynthesis in Saccharomyces cerevisiae. Genetics 163:69–77PubMedPubMedCentralGoogle Scholar
  203. Whitfield D, Large PJ (1986) Enzymes metabolizing dimethylamine, trimethylamine and trimethylamine N-oxide in the yeast Sporopachydermia cereana grown on amines as sole nitrogen source. FEMS Microbiol Lett 35:99–105CrossRefGoogle Scholar
  204. Whitfield D, Large PJ (1987) Assimilatory reduction of trimethylamine N-oxide in the yeast Sporopachydermia cereana. Appl Microbiol Biotechnol 26:277–282CrossRefGoogle Scholar
  205. Whitney PA, Cooper TG (1972) Urea carboxylase and allophanate hydrolase. Two components of adenosine triphosphate:urea amido-lyase in Saccharomyces cerevisiae. J Biol Chem 247:1349–1353PubMedGoogle Scholar
  206. Wong S, Wolfe KH (2005) Birth of a metabolic gene cluster in yeast by adaptive gene relocation. Nat Genet 37:777–782CrossRefGoogle Scholar
  207. Wong KH, Hynes MJ, Davis MA (2008) Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi. Eukaryot Cell 7:917–925PubMedPubMedCentralCrossRefGoogle Scholar
  208. Woolfolk SW, Inglis GD (2004) Microorganisms associated with field-collected Chrysoperla rufilabris (Neuroptera: Chrysopidae) adults with emphasis on yeast symbionts. Biol Control 29:155–168CrossRefGoogle Scholar
  209. Yoo HS, Cooper TG (1991) Sequences of two adjacent genes, one (DAL2) encoding allantoicase and another (DCG1) sensitive to nitrogen-catabolite repression in Saccharomyces cerevisiae. Gene 104:55–62PubMedCrossRefGoogle Scholar
  210. Yoo HS, Genbauffe FS, Cooper TG (1985) Identification of the ureidoglycolate hydrolase gene in the DAL gene cluster of Saccharomyces cerevisiae. Mol Cell Biol 5:2279–2288PubMedPubMedCentralCrossRefGoogle Scholar
  211. Yurimoto H, Hasegawa T, Sakai Y, Kato N (2000) Physiological role of the D-amino acid oxidase gene, DAO1, in carbon and nitrogen metabolism in the methylotrophic yeast Candida boidinii. Yeast 16:1217–1227PubMedCrossRefGoogle Scholar
  212. Yurimoto H, Hasegawa T, Sakai Y, Kato N (2001) Characterization and high-level production of D-amino acid oxidase in Candida boidinii. Biosci Biotechnol Biochem 65:627–633PubMedCrossRefGoogle Scholar
  213. Zhang N, Suh SO, Blackwell M (2003) Microorganisms in the gut of beetles: evidence from molecular cloning. J Invertebr Pathol 84:226–233PubMedCrossRefGoogle Scholar
  214. Zwart KB, Overmans FH, Harder W (1983a) The role of peroxisomes in the metabolism of D-alanine in the yeast Candida utilis. FEMS Microbiol Lett 19:225–231Google Scholar
  215. Zwart KB, Veenhuis M, Harder W (1983b) Significance of yeast peroxisomes in the metabolism of choline and ethanolamine. Antonie Van Leeuwenhoek 49:369–385PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Molecular SciencesSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations