Advertisement

Frontier in Antifungal Treatments Against Major Human Fungal Opportunistic Pathogen Candida Species and Medically Important Fungi

  • Nitnipa SoontorngunEmail author
  • Pichayada Somboon
  • Kwanruthai Watchaputi
Chapter

Abstract

The extensive uses of antifungal agents to treat fungal infections have created a global public health issue of drug resistance. Candida species and other pathogenic mycoses are the leading causes of invasive fungal infections and high mortality rate in human population. A limited number of antifungal agents show fungicidal effect; repetitive uses of fungistatic drugs lead to the development of drug resistance. New antifungal agents with a broader spectrum of activity and novel mechanisms of action have been recently developed to fight against resistant fungal strains and clinical isolates. This would create a possibility to investigate antifungal combinations in vitro, in yeast and in animal models. If the drugs have different mechanisms of action, increased drug potency and efficacy with reduced toxicity may be rewarded. Recently, there are several investigational antifungal agents on repurposing drugs and natural products from different sources––plants, microbial, and marines––which may be considered when designing antifungal drug combinations. Imminently, more classes of antifungals from natural products may be added to the current antifungal armamentarium. Therefore, the new frontier of combination therapy and natural drug discovery should continue to be pursued with anticipation while excessive and repetitive antifungal usage shall be refrained.

Keywords

Antifungal Candida Combination therapy Drug resistance Natural product Yeast model 

Notes

Acknowledgments

This work is supported by Thailand Research Fund, National Research Council of Thailand, and King Mongkut’s University of Technology Thonburi through the KMUTT 55th Anniversary commemorative fund.

References

  1. Ahmad A et al (2010a) Proton translocating ATPase mediated fungicidal activity of eugenol and thymol. Fitoterapia 81(8):1157–1162PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ahmad A et al (2010b) In vitro synergy of eugenol and methyleugenol with fluconazole against clinical Candida isolates. J Med Microbiol 59(Pt 10):1178–1184PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ahmad A et al (2017) Synergistic antifungal effect of cyclized chalcone derivatives and fluconazole against Candida albicans. Med Chem Comm 8(12):2195–2207CrossRefGoogle Scholar
  4. Aicher TD et al (1992) Total synthesis of halichondrin B and norhalichondrin B. J Am Chem Soc 114(8):3162–3164CrossRefGoogle Scholar
  5. Akache B, Turcotte B (2002) New regulators of drug sensitivity in the family of yeast zinc cluster proteins. J Biol Chem 277(24):21254–21260PubMedCrossRefPubMedCentralGoogle Scholar
  6. Alborzi A, Moeini M, Haddadi P (2012) Antifungal susceptibility of the Aspergillus species by Etest and CLSI reference methods. Arch Iran Med 15(7):429PubMedPubMedCentralGoogle Scholar
  7. Alvarez-Miranda M et al 2003 Characterization of the mechanism of action of ES-285, a novel antitumor drug from Mactromeris poynyma. In Clinical cancer research. American Association for Cancer Research, PhiladelphiaGoogle Scholar
  8. Arendrup MC (2014) Update on antifungal resistance in Aspergillus and Candida. Clin Microbiol Infect 20:42–48PubMedCrossRefPubMedCentralGoogle Scholar
  9. Armstrong AW, Bukhalo M, Blauvelt A (2016) A clinician’s guide to the diagnosis and treatment of Candidiasis in patients with psoriasis. Am J Clin Dermatol 17(4):329–336PubMedPubMedCentralCrossRefGoogle Scholar
  10. Baddley JW (2011a) Clinical risk factors for invasive aspergillosis. Med Mycol 49(Suppl 1):S7–s12PubMedCrossRefPubMedCentralGoogle Scholar
  11. Baddley JW (2011b) Clinical risk factors for invasive aspergillosis. Med Mycol 49(Suppl 1):S7–S12PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bao L et al (2010) (-)-Sclerotiorin from an unidentified marine fungus as an anti-meiotic and anti-fungal agent. Nat Prod Commun 5(11):1789–1792PubMedPubMedCentralGoogle Scholar
  13. Barrett D (2002a) From natural products to clinically useful antifungals. Biochim Biophys Acta 1587(2–3):224–233PubMedCrossRefPubMedCentralGoogle Scholar
  14. Barrett D (2002b) From natural products to clinically useful antifungals. Biochim Biophys Acta (BBA) Mol Basis Dis 1587(2):224–233CrossRefGoogle Scholar
  15. Bartoletti M et al (2013) Incidence and outcome of early Candida peritonitis after liver and pancreas transplantation. Mycoses 56(2):162–167PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bassetti M et al (2006) Epidemiological trends in nosocomial candidemia in intensive care. BMC Infect Dis 6:21–21PubMedPubMedCentralCrossRefGoogle Scholar
  17. Beardsley J et al (2018) Responding to the emergence of antifungal drug resistance: perspectives from the bench and the bedside. Future Microbiol 13:1175–1191PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bezakova L et al (1996) Lipoxygenase inhibition and antioxidant properties of bisbenzylisoqunoline alkaloids isolated from Mahonia aquifolium. Pharmazie 51(10):758–761PubMedPubMedCentralGoogle Scholar
  19. Bhatnagar I, Kim SK (2012) Pharmacologically prospective antibiotic agents and their sources: a marine microbial perspective. Environ Toxicol Pharmacol 34(3):631–643PubMedCrossRefPubMedCentralGoogle Scholar
  20. Borjihan H et al (2009) The vacuole-targeting fungicidal activity of amphotericin B against the pathogenic fungus Candida albicans and its enhancement by allicin. J Antibiot (Tokyo) 62(12):691–697CrossRefGoogle Scholar
  21. Brown GD, Denning DW, Levitz SM (2012a) Tackling human fungal infections. Science 336(6082):647–647PubMedCrossRefPubMedCentralGoogle Scholar
  22. Brown GD et al (2012b) Hidden Killers: Human Fungal Infections. Sci Transl Med 4(165):165rv13PubMedCrossRefPubMedCentralGoogle Scholar
  23. Campoy S, Adrio JL (2017a) Antifungals. Biochem Pharmacol 133:86–96PubMedCrossRefPubMedCentralGoogle Scholar
  24. Campoy S, Adrio JL (2017b) Antifungals. Biochem Pharmacol 133:86–96PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cappelletty D, Eiselstein-McKitrick K (2007) The Echinocandins. Pharmacotherapy 27(3):369–388PubMedCrossRefPubMedCentralGoogle Scholar
  26. Carter SB (1967) Effects of cytochalasins on mammalian cells. Nature 213(5073):261–264PubMedCrossRefPubMedCentralGoogle Scholar
  27. Chang YL et al (2017) New facets of antifungal therapy. Virulence 8(2):222–236PubMedCrossRefPubMedCentralGoogle Scholar
  28. Chen J et al (2008) Analysis of major alkaloids in Rhizoma coptidis by capillary electrophoresis-electrospray-time of flight mass spectrometry with different background electrolytes. Electrophoresis 29(10):2135–2147PubMedCrossRefPubMedCentralGoogle Scholar
  29. Chin Y-W et al (2006) Drug discovery from natural sources. AAPS J 8(2):E239–E253PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chowdhary A et al (2014) Exploring azole antifungal drug resistance in Aspergillus fumigatus with special reference to resistance mechanisms. Future Microbiol 9(5):697–711PubMedCrossRefPubMedCentralGoogle Scholar
  31. Coste AT et al (2004) TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot Cell 3(6):1639–1652PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cragg GM (1998) Paclitaxel (Taxol®): a success story with valuable lessons for natural product drug discovery and development. Med Res Rev 18(5):315–331PubMedCrossRefPubMedCentralGoogle Scholar
  33. Cragg GM, Newman DJ (2013) Natural products: A continuing source of novel drug leads. Biochim Biophys Acta Gen Subj 1830(6):3670–3695CrossRefGoogle Scholar
  34. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Biochemistry and molecular biology of plants, vol 24. West Sussex, Chichester, pp 1250–1319Google Scholar
  35. Cruz LIB et al (2018) Anti-Candida albicans activity of thiazolylhydrazone derivatives in invertebrate and murine models. J Fungi (Basel) 4(4):1–14PubMedCentralCrossRefGoogle Scholar
  36. Cuadros R et al (2000) The marine compound spisulosine, an inhibitor of cell proliferation, promotes the disassembly of actin stress fibers. Cancer Lett 152(1):23–29PubMedCrossRefPubMedCentralGoogle Scholar
  37. de Aguiar Cordeiro R et al (2014) The calcineurin inhibitor cyclosporin A exhibits synergism with antifungals against Candida parapsilosis species complex. J Med Microbiol 63(7):936–944CrossRefGoogle Scholar
  38. De Rosa FG et al (2016) Appropriate treatment of invasive candidiasis in ICU: timing, colonization index, Candida Score & Biomarkers, Towards de-Escalation? Turkish J Anaesthesiol Reanimat 44(6):279–282CrossRefGoogle Scholar
  39. Denning DW (2003) Echinocandin antifungal drugs. Lancet 362(9390):1142–1151PubMedCrossRefPubMedCentralGoogle Scholar
  40. Derengowski LS et al (2009) Antimicrobial effect of farnesol, a Candida albicans quorum sensing molecule, on Paracoccidioides brasiliensis growth and morphogenesis. Ann Clin Microbiol Antimicrob 8:13–13PubMedPubMedCentralCrossRefGoogle Scholar
  41. Dhamgaye S et al (2014) Molecular mechanisms of action of herbal antifungal alkaloid berberine, in Candida albicans. PLoS One 9(8):e104554PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Meta 2(2):303–336Google Scholar
  43. Domínguez JM, Martín JJ (1998) Identification of elongation factor 2 as the essential protein targeted by sordarins in Candida albicans. Antimicrob Agents Chemother 42(9):2279–2283PubMedPubMedCentralCrossRefGoogle Scholar
  44. Domínguez JM et al (1998) Sordarins: a new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts. Antimicrob Agents Chemother 42(9):2274–2278PubMedPubMedCentralCrossRefGoogle Scholar
  45. Dominguez JM, Gomez-Lorenzo MG, Martin JJ (1999) Sordarin inhibits fungal protein synthesis by blocking translocation differently to fusidic acid. J Biol Chem 274(32):22423–22427PubMedCrossRefPubMedCentralGoogle Scholar
  46. Dutcher JD (1968) The discovery and development of amphotericin B. Chest 54:296–298Google Scholar
  47. Facts et al (2004) The review of natural products: formerly lawrence review of natural products published by facts and comparisons. Lippincott Williams & Wilkins, LondonGoogle Scholar
  48. Faria NC et al (2011) Enhanced activity of antifungal drugs using natural phenolics against yeast strains of Candida and Cryptococcus. Lett Appl Microbiol 52(5):506–513PubMedCrossRefPubMedCentralGoogle Scholar
  49. Farmakiotis D, Kontoyiannis DP (2016) Mucormycoses. Infect Dis Clin N Am 30(1):143–163CrossRefGoogle Scholar
  50. Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18(1):1R–49RCrossRefGoogle Scholar
  51. Gao S-S et al (2011) Penicisteroids A and B, antifungal and cytotoxic polyoxygenated steroids from the marine alga-derived endophytic fungus Penicillium chrysogenum QEN-24S. Bioorg Med Chem Lett 21(10):2894–2897CrossRefGoogle Scholar
  52. Georgiev VS (2000) Membrane transporters and antifungal drug resistance. Curr Drug Targets 1(3):261–284CrossRefGoogle Scholar
  53. Golinska P et al (2014) Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 98(19):8083–8097PubMedCrossRefPubMedCentralGoogle Scholar
  54. Greenberg R et al (2006) Posaconazole as salvage therapy for zygomycosis. Antimicrob Agents Chemother 50(1):126–133PubMedPubMedCentralCrossRefGoogle Scholar
  55. Guo N et al (2009) Antifungal activity of thymol against clinical isolates of fluconazole-sensitive and -resistant Candida albicans. J Med Microbiol 58.(Pt 8:1074–1079PubMedCrossRefPubMedCentralGoogle Scholar
  56. Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8(12):536–544PubMedCrossRefPubMedCentralGoogle Scholar
  57. Haidle AM, Myers AG (2004) An enantioselective, modular, and general route to the cytochalasins: Synthesis of L-696,474 and cytochalasin B. Proc Natl Acad Sci U S A 101(33):12048–12053PubMedPubMedCentralCrossRefGoogle Scholar
  58. Harvey AL, Edrada-Ebel R, Quinn RJ (2015a) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14(2):111–129PubMedCrossRefPubMedCentralGoogle Scholar
  59. Harvey AL, Edrada-Ebel R, Quinn RJ (2015b) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14(2):111–129PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hauser D, Sigg HP (1971) Isolation and decomposition of sordarin. Helv Chim Acta 54(4):1178–1190PubMedCrossRefPubMedCentralGoogle Scholar
  61. Howard SJ, Pasqualotto AC, Denning DW (2010) Azole resistance in allergic bronchopulmonary aspergillosis and Aspergillus bronchitis. Clin Microbiol Infect 16(6):683–688PubMedCrossRefPubMedCentralGoogle Scholar
  62. Ibrahim AS et al (2008) Combination echinocandin-polyene treatment of murine mucormycosis. Antimicrob Agents Chemother 52(4):1556–1558PubMedPubMedCentralCrossRefGoogle Scholar
  63. Ishitsuka MO, Kusumi T, Kakisawa H (1988) Antitumor xenicane and norxenicane lactones from the brown alga Dictyota dichotoma. J Org Chem 53(21):5010–5013CrossRefGoogle Scholar
  64. Iwazaki RS et al (2010) In vitro antifungal activity of the berberine and its synergism with fluconazole. Antonie Van Leeuwenhoek 97(2):201PubMedCrossRefPubMedCentralGoogle Scholar
  65. Jiang C et al (2012) Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China. J Antimicrob Chemother 68(4):778–785PubMedCrossRefPubMedCentralGoogle Scholar
  66. Justice MC et al (1998) Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J Biol Chem 273(6):3148–3151PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kim J et al (2008) Chemosensitization prevents tolerance of Aspergillus fumigatus to antimycotic drugs. Biochem Biophys Res Commun 372(1):266–271PubMedCrossRefPubMedCentralGoogle Scholar
  68. Kofla G, Ruhnke M (2011) Pharmacology and metabolism of anidulafungin, caspofungin and micafungin in the treatment of invasive candidosis-review of the literature. Eur J Med Res 16(4):159PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kolaczkowska A, Goffeau A (1999) Regulation of pleiotropic drug resistance in yeast. Drug Resist Updat 2(6):403–414PubMedCrossRefPubMedCentralGoogle Scholar
  70. Kołaczkowska A, Kołaczkowski M (2016) Drug resistance mechanisms and their regulation in non-albicans Candida species. J Antimicrob Chemother 71(6):1438–1450PubMedCrossRefPubMedCentralGoogle Scholar
  71. Kwon-Chung KJ, Sugui JA (2013) Aspergillus fumigatus – what makes the species a ubiquitous human fungal pathogen? PLoS Pathog 9(12):e1003743PubMedPubMedCentralCrossRefGoogle Scholar
  72. Laniado-Laborin R, Cabrales-Vargas MN (2009) Amphotericin B: side effects and toxicity. Rev Iberoam Micol 26(4):223–227PubMedCrossRefPubMedCentralGoogle Scholar
  73. Lei J, Xu J, Wang T (2018) In vitro susceptibility of Candida spp. to fluconazole, itraconazole and voriconazole and the correlation between triazoles susceptibility: results from a five-year study. Journal de mycologie medicale 28(2):310–313PubMedCrossRefPubMedCentralGoogle Scholar
  74. Levy ER et al (2013) Treatment of pediatric refractory coccidioidomycosis with combination voriconazole and caspofungin: a retrospective case series. Clin Infect Dis 56(11):1573–1578PubMedCrossRefPubMedCentralGoogle Scholar
  75. Li D-D et al (2013) Fluconazole assists berberine to kill fluconazole-resistant Candida albicans. Antimicrob Agents Chemother 57:6016–6027PubMedPubMedCentralCrossRefGoogle Scholar
  76. Litaudon M et al (1994) Isohomohalichondrin B, a new antitumour polyether macrolide from the New Zealand deep-water sponge Lissodendoryx sp. Tetrahedron Lett 35(50):9435–9438CrossRefGoogle Scholar
  77. MacPherson S et al (2005) Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob Agents Chemother 49(5):1745–1752PubMedPubMedCentralCrossRefGoogle Scholar
  78. MacPherson S, Larochelle M, Turcotte B (2006) A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 70(3):583–604PubMedPubMedCentralCrossRefGoogle Scholar
  79. Mandala SM et al (1997a) Khafrefungin, a novel inhibitor of sphingolipid synthesis. J Biol Chem 272(51):32709–32714PubMedCrossRefPubMedCentralGoogle Scholar
  80. Mandala SM et al (1997b) Khafrefungin, a novel inhibitor of sphingolipid synthesis. J Biol Chem 272(51):32709–32714PubMedCrossRefPubMedCentralGoogle Scholar
  81. Mann J (2000) Murder, magic, and medicine. Oxford University Press, New YorkGoogle Scholar
  82. Marchese A et al (2016) Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem 210:402–414PubMedCrossRefPubMedCentralGoogle Scholar
  83. Marchetti O et al (2000) Potent synergism of the combination of fluconazole and cyclosporine in Candida albicans. Antimicrob Agents Chemother 44(9):2373–2381PubMedPubMedCentralCrossRefGoogle Scholar
  84. Marinelli F (2009) Chapter 2. from microbial products to novel drugs that target a multitude of disease indications. 2009/04/21 ed. Methods Enzymol 458:29–58PubMedCrossRefPubMedCentralGoogle Scholar
  85. Marr KA et al (2015) Combination antifungal therapy for invasive aspergillosis: a randomized trial. Ann Intern Med 162(2):81–89PubMedCrossRefPubMedCentralGoogle Scholar
  86. Martin KW, Ernst E (2004) Herbal medicines for treatment of fungal infections: a systematic review of controlled clinical trials. Mycoses 47(3–4):87–92PubMedCrossRefPubMedCentralGoogle Scholar
  87. Maschmeyer G, Haas A, Cornely OA (2007) Invasive aspergillosis: epidemiology, diagnosis and management in immunocompromised patients. Drugs 67(11):1567–1601PubMedCrossRefPubMedCentralGoogle Scholar
  88. Mayer AM et al (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31(6):255–265PubMedCrossRefPubMedCentralGoogle Scholar
  89. Mesa-Arango AC, Scorzoni L, Zaragoza O (2012) It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front Microbiol 3:286PubMedPubMedCentralCrossRefGoogle Scholar
  90. Miceli MH, Kauffman CA (2015) Isavuconazole: A New Broad-Spectrum Triazole Antifungal Agent. Clin Infect Dis 61(10):1558–1565PubMedCrossRefPubMedCentralGoogle Scholar
  91. Mišík V et al (1995) Lipoxygenase inhibition and antioxidant properties of protoberberine and aporphine alkaloids isolated from Mahonia aquifolium. Planta Med 61(04):372–373PubMedCrossRefPubMedCentralGoogle Scholar
  92. Mogavero S et al (2011) Differential requirement of the transcription factor Mcm1 for activation of the Candida albicans multidrug efflux pump MDR1 by its regulators Mrr1 and Cap1. Antimicrob Agents Chemother 55:2061PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mora C et al (2011) How many species are there on earth and in the ocean? PLoS Biol 9(8):e1001127PubMedPubMedCentralCrossRefGoogle Scholar
  94. Moreno I et al (2003) Characterization of a Candida albicans gene encoding a putative transcriptional factor required for cell wall integrity. FEMS Microbiol Lett 226(1):159–167PubMedCrossRefPubMedCentralGoogle Scholar
  95. Morschhäuser J et al (2007) The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog 3(11):e164PubMedPubMedCentralCrossRefGoogle Scholar
  96. Moye-Rowley WS (2003a) Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences. Eukaryot Cell 2(3):381–389PubMedPubMedCentralCrossRefGoogle Scholar
  97. Moye-Rowley WS (2003b) Transcriptional control of multidrug resistance in the yeast Saccharomyces. Prog Nucleic Acid Res Mol Biol 73:251–279PubMedCrossRefPubMedCentralGoogle Scholar
  98. Negri M et al (2014) Early state research on antifungal natural products. Molecules 19(3):2925–2956PubMedPubMedCentralCrossRefGoogle Scholar
  99. Nishikawa JL et al (2016) Inhibiting fungal multidrug resistance by disrupting an activator-mediator interaction. Nature 530(7591):485–489PubMedPubMedCentralCrossRefGoogle Scholar
  100. O’Hagan D (1991) The polyketide metabolites. Ellis Horwood Ltd, ChichesterGoogle Scholar
  101. Odds FC (2001) Sordarin antifungal agents. Expert Opin Ther Pat 11(2):283–294CrossRefGoogle Scholar
  102. Papich MG (2016) Griseofulvin. In Papich MG (ed) Saunders handbook of veterinary drugs, 4th edn. W.B. Saunders, St. Louis, pp 367–368CrossRefGoogle Scholar
  103. Pappas PG et al (2009) Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 48(5):503–535PubMedCrossRefPubMedCentralGoogle Scholar
  104. Pappas PG et al (2010) Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis 50(8):1101–1111PubMedCrossRefPubMedCentralGoogle Scholar
  105. Pappas PG et al (2016) Clinical practice guideline for the management of Candidiasis: 2016 update by the infectious diseases Society of America. Clin Infect Dis 62(4):e1–e50PubMedCrossRefPubMedCentralGoogle Scholar
  106. Perfect JR (2017) The antifungal pipeline: a reality check. Nat Rev Drug Discov 16(9):603–616PubMedPubMedCentralCrossRefGoogle Scholar
  107. Perfect JR et al (2010) Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis 50(3):291–322PubMedPubMedCentralCrossRefGoogle Scholar
  108. Perkhofer S et al (2008) Posaconazole enhances the activity of amphotericin B against hyphae of zygomycetes in vitro. Antimicrob Agents Chemother 52(7):2636–2638PubMedPubMedCentralCrossRefGoogle Scholar
  109. Perlin DS (2011) Current perspectives on echinocandin class drugs. Future Microbiol 6(4):441–457PubMedPubMedCentralCrossRefGoogle Scholar
  110. Pettit GR et al (1991) Antineoplastic agents. 219. Isolation and structure of the cell growth inhibitory constituents from the western Pacific marine sponge Axinella sp. J Med Chem 34(11):3339–3340PubMedCrossRefPubMedCentralGoogle Scholar
  111. Pettit GR et al (1993) Antineoplastic agents. 251. Isolation and structure of stylostatin 1 from the Papua New Guinea marine sponge Stylotella sp. [Erratum to document cited in CA118 (5): 36157a]. J Org Chem 58(11):3222–3222CrossRefGoogle Scholar
  112. Pinkofsky HB, Dwyer DS, Bradley RJ (2000) The inhibition of GLUT1 glucose transport and cytochalasin B binding activity by tricyclic antidepressants. Life Sci 66(3):271–278PubMedCrossRefPubMedCentralGoogle Scholar
  113. Pongcharoen W et al (2007) Cytotoxic metabolites from the wood-decayed fungus Xylaria sp. BCC 9653. Chem Pharm Bull 55(11):1647–1648PubMedCrossRefPubMedCentralGoogle Scholar
  114. Radulovic NS et al (2013) Antimicrobial plant metabolites: structural diversity and mechanism of action. Curr Med Chem 20(7):932–952PubMedPubMedCentralGoogle Scholar
  115. Richter SS et al (2005) Antifungal susceptibilities of Candida species causing vulvovaginitis and epidemiology of recurrent cases. J Clin Microbiol 43(5):2155–2162PubMedPubMedCentralCrossRefGoogle Scholar
  116. Ringel S et al (1977) Ambruticin (W7783), a new antifungal antibiotic. J Antibiot 30(5):371–375PubMedCrossRefPubMedCentralGoogle Scholar
  117. Rivero-Menendez O et al (2016) Triazole resistance in Aspergillus spp.: a worldwide problem? J Fungi (Basel, Switzerland) 2(3):21Google Scholar
  118. Robbins N, Wright GD, Cowen LE (2016) Antifungal drugs: the current armamentarium and development of new agents. Microbiol Spectr 4(5):903–922Google Scholar
  119. Roemer T, Krysan DJ (2014) Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med 4(5):a019703PubMedPubMedCentralCrossRefGoogle Scholar
  120. Rothweiler W, Tamm C (1966) Isolation and structure of Phomin. Experientia 22(11):750–752CrossRefGoogle Scholar
  121. Salcedo M et al (2003) The marine antitumor compound ES 285 activates EGD receptors. In: Clinical cancer research. American Association for Cancer Research, PhiladelphiaGoogle Scholar
  122. Sanglard D (2002) Resistance of human fungal pathogens to antifungal drugs. Curr Opin Microbiol 5(4):379–385PubMedCrossRefPubMedCentralGoogle Scholar
  123. Savoia D (2012) Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol 7(8):979–990PubMedCrossRefPubMedCentralGoogle Scholar
  124. Scherlach K et al (2010) The chemistry and biology of cytochalasans. Nat Prod Rep 27(6):869–886PubMedCrossRefPubMedCentralGoogle Scholar
  125. Scorzoni L et al (2017) Antifungal therapy: new advances in the understanding and treatment of mycosis. Front Microbiol 8:36PubMedPubMedCentralCrossRefGoogle Scholar
  126. Shao J et al (2016) Antiproliferation of berberine in combination with fluconazole from the perspectives of reactive oxygen species, ergosterol and drug efflux in a fluconazole-resistant Candida tropicalis isolate. Front Microbiol (7):1516Google Scholar
  127. Sharma M et al (2010) Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res 10(5):570–578PubMedPubMedCentralGoogle Scholar
  128. Shastry M et al (2001) Species-specific inhibition of fungal protein synthesis by sordarin: identification of a sordarin-specificity region in eukaryotic elongation factor 2. Microbiology 147(Pt 2):383–390PubMedCrossRefPubMedCentralGoogle Scholar
  129. Shi D et al (2016) Antifungal effects of undecylenic acid on the biofilm formation of Candida albicans. Int J Clin Pharmacol Ther 54(5):343–353PubMedCrossRefPubMedCentralGoogle Scholar
  130. Silver PM, Oliver BG, White TC (2004) Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism. Eukaryot Cell 3(6):1391–1397PubMedPubMedCentralCrossRefGoogle Scholar
  131. Skiada A et al (2013) Diagnosis and treatment of mucormycosis in patients with hematological malignancies: guidelines from the 3rd European Conference on Infections in Leukemia (ECIL 3). Haematologica 98(4):492–504PubMedPubMedCentralCrossRefGoogle Scholar
  132. Somboon P et al (2017) Fungicide Xylaria sp. BCC 1067 extract induces reactive oxygen species and activates multidrug resistance system in Saccharomyces cerevisiae. Future Microbiol 12:417–440PubMedCrossRefPubMedCentralGoogle Scholar
  133. Song F et al (2010) Trichodermaketones A− D and 7-O-methylkoninginin D from the marine fungus Trichoderma koningii. J Nat Prod 73(5):806–810PubMedCrossRefPubMedCentralGoogle Scholar
  134. Song F et al (2014) Secondary metabolites from the genus Xylaria and their bioactivities. Chem Biodivers 11(5):673–694PubMedCrossRefPubMedCentralGoogle Scholar
  135. Soontorngun N et al (2007) Regulation of gluconeogenesis in Saccharomyces cerevisiae is mediated by activator and repressor functions of Rds2. Mol Cell Biol 27(22):7895–7905PubMedPubMedCentralCrossRefGoogle Scholar
  136. Spellberg B et al (2005) Combination therapy with amphotericin B lipid complex and caspofungin acetate of disseminated zygomycosis in diabetic ketoacidotic mice. Antimicrob Agents Chemother 49(2):830–832PubMedPubMedCentralCrossRefGoogle Scholar
  137. Spitzer M, Robbins N, Wright GD (2017) Combinatorial strategies for combating invasive fungal infections. Virulence 8(2):169–185PubMedCrossRefPubMedCentralGoogle Scholar
  138. Stone NR et al (2016) Liposomal amphotericin B (AmBisome®): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs 76(4):485–500PubMedPubMedCentralCrossRefGoogle Scholar
  139. Sucher AJ, Chahine EB, Balcer HE (2009) Echinocandins: the newest class of antifungals. Ann Pharmacother 43(10):1647–1657PubMedCrossRefPubMedCentralGoogle Scholar
  140. Susan JH et al (2009) Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis J 15(7):1068CrossRefGoogle Scholar
  141. Taborda CP, Nosanchuk JD (2017) Editorial: vaccines, immunotherapy and new antifungal therapy against fungi: updates in the New Frontier. Front Microbiol 8:1743PubMedPubMedCentralCrossRefGoogle Scholar
  142. Talibi D, Raymond M (1999) Isolation of a Putative Candida albicans Transcriptional Regulator Involved in Pleiotropic Drug Resistance by Functional Complementation of a pdr1 pdr3 Mutation in Saccharomyces cerevisiae. J Bacteriol 181(1):231–240PubMedPubMedCentralGoogle Scholar
  143. Tan W et al (2011) Berberine hydrochloride: anticancer activity and nanoparticulate delivery system. Int J Nanomedicine 6:1773–1777PubMedPubMedCentralCrossRefGoogle Scholar
  144. Tarman K et al (2011) Biological and chemical study of two Indonesian marine endophytic fungi. Planta Med 77(12):SL71CrossRefGoogle Scholar
  145. Tarman K et al (2012) Helicascolide C, a new lactone from an Indonesian marine algicolous strain of Daldinia eschscholzii (Xylariaceae, Ascomycota). Phytochem Lett 5(1):83–86CrossRefGoogle Scholar
  146. Tedesco D, Haragsim L (2012) Cyclosporine: a review. J Transplant 2012:230386–230386PubMedPubMedCentralCrossRefGoogle Scholar
  147. Trimurtulu G et al (1994) Total structures of cryptophycins, potent antitumor depsipeptides from the blue-green alga Nostoc sp. strain GSV 224. J Am Chem Soc 116(11):4729–4737CrossRefGoogle Scholar
  148. Tsiodras S et al (2008) Fungal infections complicating tumor necrosis factor alpha blockade therapy. Mayo Clin Proc 83(2):181–194PubMedCrossRefPubMedCentralGoogle Scholar
  149. Uemura D et al (1985) Norhalichondrin A: an antitumor polyether macrolide from a marine sponge. J Am Chem Soc 107(16):4796–4798CrossRefGoogle Scholar
  150. Vallabhaneni S, Chiller TM (2016) Fungal infections and new biologic therapies. Curr Rheumatol Rep 18(5):29PubMedCrossRefPubMedCentralGoogle Scholar
  151. Vandeputte P et al (2011a) Molecular mechanisms of resistance to 5-fluorocytosine in laboratory mutants of Candida glabrata. Mycopathologia 171(1):11–21PubMedCrossRefPubMedCentralGoogle Scholar
  152. Vandeputte P, Ferrari S, Coste AT (2011b) Antifungal resistance and new strategies to control fungal infections. Intl J Microbiol 2012Google Scholar
  153. Vazquez JA (2007) Combination antifungal therapy: the new frontier. Future Microbiol 2(2):115–139PubMedCrossRefPubMedCentralGoogle Scholar
  154. Verweij PE et al (2016) Azole resistance in Aspergillus fumigatus: Can we retain the clinical use of mold-active antifungal azoles? Clin Infect Dis 62(3):362–368PubMedCrossRefPubMedCentralGoogle Scholar
  155. Vetcher L et al (2007) The antifungal polyketide ambruticin targets the HOG pathway. Antimicrob Agents Chemother 51(10):3734–3736PubMedPubMedCentralCrossRefGoogle Scholar
  156. Wakabayashi T, Mori K, Kobayashi S (2001) Total synthesis and structural elucidation of khafrefungin. J Am Chem Soc 123(7):1372–1375PubMedCrossRefPubMedCentralGoogle Scholar
  157. Walsh TJ et al (2008a) Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis 46(3):327–360PubMedCrossRefPubMedCentralGoogle Scholar
  158. Walsh TJ et al (2008b) Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis 46(3):327–360PubMedCrossRefPubMedCentralGoogle Scholar
  159. Wang X et al (2012) Waikialoid A Suppresses Hyphal Morphogenesis and Inhibits Biofilm Development in Pathogenic Candida albicans. J Nat Prod 75(4):707–715PubMedPubMedCentralCrossRefGoogle Scholar
  160. Wang B et al (2014) Polyketide glycosides from Bionectria ochroleuca inhibit Candida albicans biofilm formation. J Nat Prod 77(10):2273–2279PubMedPubMedCentralCrossRefGoogle Scholar
  161. Watve MG et al (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176(5):386–390PubMedCrossRefPubMedCentralGoogle Scholar
  162. Weber K, Schulz B, Ruhnke M (2010) The quorum-sensing molecule E,E-farnesol—its variable secretion and its impact on the growth and metabolism of Candida species. Yeast 27(9):727–739PubMedCrossRefPubMedCentralGoogle Scholar
  163. Wei H et al (2015) Sesquiterpenes and other constituents of Xylaria sp. NC1214, a fungal endophyte of the moss Hypnum sp. Phytochemistry 118:102–108PubMedPubMedCentralCrossRefGoogle Scholar
  164. Wu B et al (2014) Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF106. Mar Drugs 12(3):1208–1219PubMedPubMedCentralCrossRefGoogle Scholar
  165. Xia J et al (2017) In vitro inhibitory effects of farnesol and interactions between farnesol and antifungals against biofilms of Candida albicans resistant strains. Biofouling 33(4):283–293PubMedCrossRefPubMedCentralGoogle Scholar
  166. You J et al (2013) Small-molecule suppressors of Candida albicans biofilm formation synergistically enhance the antifungal activity of amphotericin B against clinical Candida isolates. ACS Chem Biol 8(4):840–848PubMedPubMedCentralCrossRefGoogle Scholar
  167. Zheng Y-H et al (2018) An insight into new strategies to combat antifungal drug resistance. Drug Des Devel Ther 12:3807PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nitnipa Soontorngun
    • 1
    Email author
  • Pichayada Somboon
    • 1
  • Kwanruthai Watchaputi
    • 1
  1. 1.Division of Biochemical Technology, School of Bioresources and TechnologyKing Mongkut’s University of Technology ThonburiBangkokThailand

Personalised recommendations