Advertisement

Utilization of α-Glucosidic Disaccharides by Ogataea (Hansenula) polymorpha: Genes, Proteins, and Regulation

  • Tiina AlamäeEmail author
  • Katrin Viigand
  • Kristina Põšnograjeva
Chapter

Abstract

Utilization of α-glucosidic sugars such as maltose, maltotriose, isomaltose and sucrose has been extensively studied in a conventional yeast Saccharomyces cerevisiae as many important processes such as baking, brewing, and bioethanol production rely on fermentation of these sugars. In 1998, a non-conventional yeast Ogataea (formerly Hansenula) polymorpha was reported to grow on α-glucosidic disaccharides maltose and sucrose using intracellular α-glucosidase for their hydrolysis. Later on, the list of α-glucosidic sugars assimilated by O. polymorpha and hydrolyzed by its α-glucosidase was extended by adding maltotriose, isomaltose, palatinose, maltulose, and some others. In this chapter, we review the data on genetics, genomics, transport, and intracellular hydrolysis of α-glucosidic sugars in O. polymorpha. We also address evolution of yeast α-glucosidases and regulation of α-glucosidase and permease genes. Relevant data on other yeasts, mostly on S. cerevisiae, are used for comparison.

Keywords

Maltose Methylotrophic yeast Sugar transport Gene cluster Genome mining 

Notes

Acknowledgments

This book chapter is based on experimental work supported by grants from the Estonian Research Council (ETF 3923, ETF 5676, ETF 7528; ETF 9072 and PUT1050).

References

  1. Alamäe T, Liiv L (1998) Glucose repression of maltase and methanol-oxidizing enzymes in the methylotrophic yeast Hansenula polymorpha: Isolation and study of regulatory mutants. Folia Microbiol (Praha) 43:443–452.  https://doi.org/10.1007/BF02820789CrossRefGoogle Scholar
  2. Alamäe T, Pärn P, Viigand K, Karp H (2003) Regulation of the Hansenula polymorpha maltase gene promoter in H. polymorpha and Saccharomyces cerevisiae. FEMS Yeast Res 4:165–173.  https://doi.org/10.1016/S1567-1356(03)00142-9CrossRefPubMedGoogle Scholar
  3. Alves-Araújo C, Hernandez-Lopez MJ, Sousa MJ et al (2004) Cloning and characterization of the MAL11 gene encoding a high-affinity maltose transporter from Torulaspora delbrueckii. FEMS Yeast Res 4:467–476.  https://doi.org/10.1016/S1567-1356(03)00208-3CrossRefPubMedGoogle Scholar
  4. Ávila J, González C, Brito N et al (2002) A second Zn(II)2Cys6 transcriptional factor encoded by the YNA2 gene is indispensable for the transcriptional activation of the genes involved in nitrate assimilation in the yeast Hansenula polymorpha. Yeast 19:537–544.  https://doi.org/10.1002/yea.847PubMedCrossRefGoogle Scholar
  5. Blandin G, Llorente B, Malpertuy A et al (2000) Genomic exploration of the hemiascomycetous yeasts: 13. Pichia angusta. FEBS Lett 487:76–81.  https://doi.org/10.1016/S0014-5793(00)02284-5CrossRefPubMedGoogle Scholar
  6. Brown CA, Murray AW, Verstrepen KJ (2010) Rapid expansion and functional divergence of subtelomeric gene families in yeasts. Curr Biol CB 20:895–903.  https://doi.org/10.1016/j.cub.2010.04.027PubMedCrossRefGoogle Scholar
  7. Chang YS, Dubin RA, Perkins E et al (1988) MAL63 codes for a positive regulator of maltose fermentation in Saccharomyces cerevisiae. Curr Genet 14:201–209.  https://doi.org/10.1007/BF00376740PubMedCrossRefGoogle Scholar
  8. Charron MJ, Dubin RA, Michels CA (1986) Structural and functional analysis of the MAL1 locus of Saccharomyces cerevisiae. Mol Cell Biol 6:3891–3899PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cheng Q, Michels CA (1989) The maltose permease encoded by the MAL61 gene of Saccharomyces cerevisiae exhibits both sequence and structural homology to other sugar transporters. Genetics 123:477–484PubMedPubMedCentralGoogle Scholar
  10. Cheng Q, Michels CA (1991) MAL11 and MAL61 encode the inducible high-affinity maltose transporter of Saccharomyces cerevisiae. J Bacteriol 173:1817–1820PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chi Z, Ni X, Yao S (2008) Cloning and overexpression of a maltase gene from Schizosaccharomyces pombe in Escherichia coli and characterization of the recombinant maltase. Mycol Res 112:983–989.  https://doi.org/10.1016/j.mycres.2008.01.024PubMedCrossRefGoogle Scholar
  12. Cihan A, Ozcan B, Tekin N, Cokmus C (2011) Characterization of a thermostable α-glucosidase from Geobacillus thermodenitrificans F84a, pp 945–955Google Scholar
  13. Daudé D, Remaud-Siméon M, André I (2012) Sucrose analogs: an attractive (bio)source for glycodiversification. Nat Prod Rep 29:945–960.  https://doi.org/10.1039/c2np20054fPubMedCrossRefGoogle Scholar
  14. Day RE, Rogers PJ, Dawes IW, Higgins VJ (2002a) Molecular analysis of maltotriose transport and utilization by Saccharomyces cerevisiae. Appl Environ Microbiol 68:5326–5335.  https://doi.org/10.1128/AEM.68.11.5326-5335.2002PubMedPubMedCentralCrossRefGoogle Scholar
  15. Day RE, Higgins VJ, Rogers PJ, Dawes IW (2002b) Characterization of the putative maltose transporters encoded by YDL247w and YJR160c. Yeast 19:1015–1027.  https://doi.org/10.1002/yea.894PubMedCrossRefGoogle Scholar
  16. Deng X, Petitjean M, Teste M-A et al (2014) Similarities and differences in the biochemical and enzymological properties of the four isomaltases from Saccharomyces cerevisiae. FEBS Open Bio 4:200–212.  https://doi.org/10.1016/j.fob.2014.02.004PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dobson L, Reményi I, Tusnády GE (2015) CCTOP: a Consensus Constrained TOPology prediction web server. Nucleic Acids Res 43:W408–W412.  https://doi.org/10.1093/nar/gkv451PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dorokhov YL, Shindyapina AV, Sheshukova EV, Komarova TV (2015) Metabolic methanol: molecular pathways and physiological roles. Physiol Rev 95:603–644.  https://doi.org/10.1152/physrev.00034.2014PubMedCrossRefGoogle Scholar
  19. Dubin RA, Needleman RB, Gossett D, Michels CA (1985) Identification of the structural gene encoding maltase within the MAL6 locus of Saccharomyces carlsbergensis. J Bacteriol 164:605–610PubMedPubMedCentralGoogle Scholar
  20. Egeter O, Brückner R (1995) Characterization of a genetic locus essential for maltose-maltotriose utilization in Staphylococcus xylosus. J Bacteriol 177:2408–2415PubMedPubMedCentralCrossRefGoogle Scholar
  21. Fairhead C, Dujon B (2006) Structure of Kluyveromyces lactis subtelomeres: duplications and gene content. FEMS Yeast Res 6:428–441.  https://doi.org/10.1111/j.1567-1364.2006.00033.xPubMedCrossRefGoogle Scholar
  22. Feldmann H (2000) Génolevures – a novel approach to “evolutionary genomics”. FEBS Lett 487:1–2PubMedCrossRefGoogle Scholar
  23. Gabriško M (2013) Evolutionary history of eukaryotic α-glucosidases from the α-amylase family. J Mol Evol 76:129–145.  https://doi.org/10.1007/s00239-013-9545-4PubMedCrossRefGoogle Scholar
  24. Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev MMBR 62:334–361PubMedGoogle Scholar
  25. Grigoriev IV, Nikitin R, Haridas S et al (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D699–D704.  https://doi.org/10.1093/nar/gkt1183CrossRefGoogle Scholar
  26. Han EK, Cotty F, Sottas C et al (1995) Characterization of AGT1 encoding a general α-glucoside transporter from Saccharomyces. Mol Microbiol 17:1093–1107PubMedCrossRefGoogle Scholar
  27. Hasegawa S, Takizawa M, Suyama H et al (2010) Characterization and expression analysis of a maltose-utilizing (MAL) cluster in Aspergillus oryzae. Fungal Genet Biol 47:1–9.  https://doi.org/10.1016/j.fgb.2009.10.005PubMedCrossRefGoogle Scholar
  28. Hollatz C, Stambuk BU (2001) Colorimetric determination of active α-glucoside transport in Saccharomyces cerevisiae. J Microbiol Methods 46:253–259PubMedCrossRefGoogle Scholar
  29. Ishchuk OP, Voronovsky AY, Abbas CA, Sibirny AA (2009) Construction of Hansenula polymorpha strains with improved thermotolerance. Biotechnol Bioeng 104:911–919.  https://doi.org/10.1002/bit.22457PubMedCrossRefGoogle Scholar
  30. Janecek S (2009) Amylolytic enzymes-focus on the alpha-amylases from archaea and plants. Nova Biotechnol 9Google Scholar
  31. Jansen MLA, De Winde JH, Pronk JT (2002) Hxt-carrier-mediated glucose efflux upon exposure of Saccharomyces cerevisiae to excess maltose. Appl Environ Microbiol 68:4259–4265.  https://doi.org/10.1128/AEM.68.9.4259-4265.2002PubMedPubMedCentralCrossRefGoogle Scholar
  32. Jansen MLA, Krook DJJ, De Graaf K et al (2006) Physiological characterization and fed-batch production of an extracellular maltase of Schizosaccharomyces pombe CBS 356. FEMS Yeast Res 6:888–901.  https://doi.org/10.1111/j.1567-1364.2006.00091.xPubMedCrossRefGoogle Scholar
  33. Jeffries TW, Van Vleet JRH (2009) Pichia stipitis genomics, transcriptomics, and gene clusters. Fems Yeast Res 9:793–807.  https://doi.org/10.1111/j.1567-1364.2009.00525.xPubMedPubMedCentralCrossRefGoogle Scholar
  34. Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191PubMedCrossRefGoogle Scholar
  35. Kim M-J, Lee S-B, Lee H-S et al (1999) Comparative study of the inhibition of α-glucosidase, α-amylase, and cyclomaltodextrin glucanosyltransferase by acarbose, isoacarbose, and acarviosine–glucose. Arch Biochem Biophys 371:277–283.  https://doi.org/10.1006/abbi.1999.1423PubMedCrossRefGoogle Scholar
  36. Krakenaĭte RP, Glemzha AA (1983) Some properties of two forms of alpha-glucosidase from Saccharomyces cerevisiae-II. Biokhimiia Mosc Russ 48:62–68Google Scholar
  37. Kramarenko T, Karp H, Järviste A, Alamäe T (2000) Sugar repression in the methylotrophic yeast Hansenula polymorpha studied by using hexokinase-negative, glucokinase-negative and double kinase-negative mutants. Folia Microbiol (Praha) 45:521–529.  https://doi.org/10.1007/BF02818721CrossRefGoogle Scholar
  38. Kulikova-Borovikova D, Lisi S, Dauss E et al (2018) Activity of the α-glucoside transporter Agt1 in Saccharomyces cerevisiae cells during dehydration-rehydration events. Fungal Biol 122:613–620.  https://doi.org/10.1016/j.funbio.2018.03.006PubMedCrossRefGoogle Scholar
  39. Kunze G, Gaillardin C, Czernicka M et al (2014) The complete genome of Blastobotrys (Arxula) adeninivorans LS3 - a yeast of biotechnological interest. Biotechnol Biofuels 7:66.  https://doi.org/10.1186/1754-6834-7-66PubMedPubMedCentralCrossRefGoogle Scholar
  40. Laht S, Karp H, Kotka P et al (2002) Cloning and characterization of glucokinase from a methylotrophic yeast Hansenula polymorpha: different effects on glucose repression in H. polymorpha and Saccharomyces cerevisiae. Gene 296:195–203PubMedCrossRefGoogle Scholar
  41. Lee G-Y, Jung J-H, Seo D-H et al (2011) Isomaltulose production via yeast surface display of sucrose isomerase from Enterobacter sp. FMB-1 on Saccharomyces cerevisiae. Bioresour Technol 102:9179–9184.  https://doi.org/10.1016/j.biortech.2011.06.081PubMedCrossRefGoogle Scholar
  42. Leifso KR, Williams D, Hintz WE (2007) Heterologous expression of cyan and yellow fluorescent proteins from the Kluyveromyces lactis KlMAL21–KlMAL22 bi-directional promoter. Biotechnol Lett 29:1233–1241.  https://doi.org/10.1007/s10529-007-9381-yPubMedCrossRefGoogle Scholar
  43. Liiv L, Pärn P, Alamäe T (2001) Cloning of maltase gene from a methylotrophic yeast, Hansenula polymorpha. Gene 265:77–85.  https://doi.org/10.1016/S0378-1119(01)00359-6CrossRefPubMedGoogle Scholar
  44. Limtong S, Srisuk N, Yongmanitchai W et al (2008) Ogataea chonburiensis sp. nov. and Ogataea nakhonphanomensis sp. nov., thermotolerant, methylotrophic yeast species isolated in Thailand, and transfer of Pichia siamensis and Pichia thermomethanolica to the genus Ogataea. Int J Syst Evol Microbiol 58:302–307.  https://doi.org/10.1099/ijs.0.65380-0PubMedCrossRefGoogle Scholar
  45. Lombard V, Golaconda Ramulu H, Drula E et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495.  https://doi.org/10.1093/nar/gkt1178PubMedCrossRefGoogle Scholar
  46. Lunn JE (2002) Evolution of sucrose synthesis. Plant Physiol 128:1490–1500.  https://doi.org/10.1104/pp.010898PubMedPubMedCentralCrossRefGoogle Scholar
  47. Morais PB, Teixeira LCRS, Bowles JM et al (2004) Ogataea falcaomoraisii sp. nov., a sporogenous methylotrophic yeast from tree exudates. FEMS Yeast Res 5:81–85.  https://doi.org/10.1016/j.femsyr.2004.05.006PubMedCrossRefGoogle Scholar
  48. Moreno F, Herrero P (2002) The hexokinase 2-dependent glucose signal transduction pathway of Saccharomyces cerevisiae. FEMS Microbiol Rev. 26:83–90PubMedCrossRefGoogle Scholar
  49. Naumoff DG, Naumov GI (2010) Discovery of a novel family of α-glucosidase IMA genes in yeast Saccharomyces cerevisiae. Dokl Biochem Biophys 432:114–116.  https://doi.org/10.1134/S1607672910030051PubMedCrossRefGoogle Scholar
  50. Naumov GI, Naumova ES, Lee C-F (2017) Ogataea haglerorum sp. nov., a novel member of the species complex, Ogataea (Hansenula) polymorpha. Int J Syst Evol Microbiol 67:2465–2469.  https://doi.org/10.1099/ijsem.0.002012PubMedCrossRefGoogle Scholar
  51. Needleman R (1991) Control of maltase synthesis in yeast. Mol Microbiol 5:2079–2084PubMedCrossRefGoogle Scholar
  52. Needleman RB, Federoff HJ, Eccleshall TR et al (1978) Purification and characterization of an alpha-glucosidase from Saccharomyces carlsbergensis. Biochemistry 17:4657–4661PubMedCrossRefGoogle Scholar
  53. Okuyama M, Tanimoto Y, Ito T et al (2005) Purification and characterization of the hyper-glycosylated extracellular α-glucosidase from Schizosaccharomyces pombe. Enzyme Microb Technol 37:472–480.  https://doi.org/10.1016/j.enzmictec.2004.06.018CrossRefGoogle Scholar
  54. Omasits U, Ahrens CH, Müller S, Wollscheid B (2014) Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30:884–886.  https://doi.org/10.1093/bioinformatics/btt607PubMedCrossRefGoogle Scholar
  55. Parpinello G, Berardi E, Strabbioli R (1998) A regulatory mutant of Hansenula polymorpha exhibiting methanol utilization metabolism and peroxisome proliferation in glucose. J Bacteriol 180:2958–2967PubMedPubMedCentralGoogle Scholar
  56. Peinado JM, Barbero A, van UN (1987) Repression and inactivation by glucose of the maltose transport system of Candida utilis. Appl Microbiol Biotechnol 26:154–157.  https://doi.org/10.1007/BF00253901CrossRefGoogle Scholar
  57. Ramezani-Rad M, Hollenberg CP, Lauber J et al (2003) The Hansenula polymorpha (strain CBS4732) genome sequencing and analysis. FEMS Yeast Res 4:207–215.  https://doi.org/10.1016/S1567-1356(03)00125-9CrossRefPubMedGoogle Scholar
  58. Ravin NV, Eldarov MA, Kadnikov VV et al (2013) Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1. BMC Genomics 14:837PubMedPubMedCentralCrossRefGoogle Scholar
  59. Reinders A, Ward JM (2001) Functional characterization of the α-glucoside transporter Sut1p from Schizosaccharomyces pombe, the first fungal homologue of plant sucrose transporters. Mol Microbiol 39:445–455.  https://doi.org/10.1046/j.1365-2958.2001.02237.xPubMedCrossRefGoogle Scholar
  60. Sawale PD, Shendurse AM, Mohan MS, Patil GR (2017) Isomaltulose (palatinose) – an emerging carbohydrate. Food Biosci 18:46–52.  https://doi.org/10.1016/j.fbio.2017.04.003CrossRefGoogle Scholar
  61. Schönert S, Buder T, Dahl MK (1998) Identification and enzymatic characterization of the maltose-inducible α-glucosidase MalL (sucrase-isomaltase-maltase) of Bacillus subtilis. J Bacteriol 180:2574–2578PubMedPubMedCentralGoogle Scholar
  62. Schönert S, Buder T, Dahl MK (1999) Properties of maltose-inducible α-glucosidase MalL (sucrase-isomaltase-maltase) in Bacillus subtilis: evidence for its contribution to maltodextrin utilization. Res Microbiol 150:167–177PubMedCrossRefGoogle Scholar
  63. Slot JC, Rokas A (2010) Multiple GAL pathway gene clusters evolved independently and by different mechanisms in fungi. Proc Natl Acad Sci 107:10136–10,141PubMedCrossRefGoogle Scholar
  64. Stambuk BU, de Araujo PS (2001) Kinetics of active α-glucoside transport in Saccharomyces cerevisiae. FEMS Yeast Res 1:73–78PubMedGoogle Scholar
  65. Stambuk BU, Batista AS, De Araujo PS (2000) Kinetics of active sucrose transport in Saccharomyces cerevisiae. J Biosci Bioeng 89:212–214PubMedCrossRefGoogle Scholar
  66. Stewart GG (2016) Saccharomyces species in the production of beer. Beverages 2.  https://doi.org/10.3390/beverages2040034CrossRefGoogle Scholar
  67. Suppi S, Michelson T, Viigand K, Alamäe T (2013) Repression vs. activation of MOX, FMD, MPP1 and MAL1 promoters by sugars in Hansenula polymorpha: the outcome depends on cell’s ability to phosphorylate sugar. FEMS Yeast Res 13:219–232.  https://doi.org/10.1111/1567-1364.12023PubMedCrossRefGoogle Scholar
  68. Teste M-A, Francois JM, Parrou J-L (2010) Characterization of a new multigene family encoding isomaltases in the yeast Saccharomyces cerevisiae, the IMA family. J Biol Chem 285:26815–26,824.  https://doi.org/10.1074/jbc.M110.145946PubMedPubMedCentralCrossRefGoogle Scholar
  69. Trichez D, Knychala MM, Figueiredo CM et al (2018) Key amino acid residues of the AGT1 permease required for maltotriose consumption and fermentation by Saccharomyces cerevisiae. J Appl Microbiol..  https://doi.org/10.1111/jam.14161PubMedCrossRefGoogle Scholar
  70. Tsujimoto Y, Tanaka H, Takemura R et al (2007) Molecular determinants of substrate recognition in thermostable α-glucosidases belonging to glycoside hydrolase family 13. J Biochem (Tokyo) 142:87–93.  https://doi.org/10.1093/jb/mvm110CrossRefGoogle Scholar
  71. van Zutphen T, Baerends RJ, Susanna KA et al (2010) Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis. BMC Genomics 11(1).  https://doi.org/10.1186/1471-2164-11-1PubMedPubMedCentralCrossRefGoogle Scholar
  72. Vanoni M, Sollitti P, Goldenthal M, Marmur J (1989) Structure and regulation of the multigene family controlling maltose fermentation in budding yeast. Prog Nucleic Acid Res Mol Biol 37:281–322PubMedCrossRefGoogle Scholar
  73. Vega M, Riera A, Fernández-Cid A et al (2016) Hexokinase 2 is an intracellular glucose sensor of yeast cells that maintains the structure and activity of Mig1 protein repressor complex. J Biol Chem 291:7267–7285.  https://doi.org/10.1074/jbc.M115.711408PubMedPubMedCentralCrossRefGoogle Scholar
  74. Viigand K (2018) Utilization of α-glucosidic sugars by Ogataea (Hansenula) polymorpha. Dissertation, University of Tartu. http://hdl.handle.net/10062/61743
  75. Viigand K, Alamäe T (2007) Further study of the Hansenula polymorpha MAL locus: characterization of the α-glucoside permease encoded by the HpMAL2 gene. FEMS Yeast Res 7:1134–1144.  https://doi.org/10.1111/j.1567-1364.2007.00257.xPubMedCrossRefGoogle Scholar
  76. Viigand K, Tammus K, Alamäe T (2005) Clustering of MAL genes in Hansenula polymorpha: cloning of the maltose permease gene and expression from the divergent intergenic region between the maltose permease and maltase genes. FEMS Yeast Res 5:1019–1028.  https://doi.org/10.1016/j.femsyr.2005.06.003PubMedCrossRefGoogle Scholar
  77. Viigand K, Visnapuu T, Mardo K et al (2016) Maltase protein of Ogataea (Hansenula) polymorpha is a counterpart to the resurrected ancestor protein ancMALS of yeast maltases and isomaltases. Yeast 33:415–432.  https://doi.org/10.1002/yea.3157PubMedPubMedCentralCrossRefGoogle Scholar
  78. Viigand K, Põšnograjeva K, Visnapuu T, Alamäe T (2018) Genome mining of non-conventional yeasts: search and analysis of MAL clusters and proteins. Genes 9:354.  https://doi.org/10.3390/genes9070354PubMedCentralCrossRefPubMedGoogle Scholar
  79. Visnapuu T, Mäe A, Alamäe T (2008) Hansenula polymorpha maltase gene promoter with sigma 70-like elements is feasible for Escherichia coli-based biotechnological applications: Expression of three genomic levansucrase genes of Pseudomonas syringae pv. tomato. Process Biochem 43:414–422.  https://doi.org/10.1016/j.procbio.2008.01.002CrossRefGoogle Scholar
  80. Voordeckers K, Brown CA, Vanneste K et al (2012) Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication. PLoS Biol 10:e1001446.  https://doi.org/10.1371/journal.pbio.1001446PubMedPubMedCentralCrossRefGoogle Scholar
  81. Wang X, Bali M, Medintz I, Michels CA (2002) Intracellular maltose is sufficient to induce MAL gene expression in Saccharomyces cerevisiae. Eukaryot Cell 1:696–703.  https://doi.org/10.1128/EC.1.5.696-703.2002PubMedPubMedCentralCrossRefGoogle Scholar
  82. Wieczorke R, Krampe S, Weierstall T et al (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128PubMedCrossRefGoogle Scholar
  83. Wong S, Wolfe KH (2005) Birth of a metabolic gene cluster in yeast by adaptive gene relocation. Nat Genet 37:777–782PubMedCrossRefGoogle Scholar
  84. Yamamoto K, Nakayama A, Yamamoto Y, Tabata S (2004) Val216 decides the substrate specificity of α-glucosidase in Saccharomyces cerevisiae: Substrate specificity of α-glucosidase. Eur J Biochem 271:3414–3420.  https://doi.org/10.1111/j.1432-1033.2004.04276.xPubMedCrossRefGoogle Scholar
  85. Yamamoto K, Miyake H, Kusunoki M, Osaki S (2010) Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose: Crystal structure of isomaltase. FEBS J 277:4205–4214.  https://doi.org/10.1111/j.1742-4658.2010.07810.xPubMedCrossRefGoogle Scholar
  86. Yamamoto K, Miyake H, Kusunoki M, Osaki S (2011) Steric hindrance by 2 amino acid residues determines the substrate specificity of isomaltase from Saccharomyces cerevisiae. J Biosci Bioeng 112:545–550.  https://doi.org/10.1016/j.jbiosc.2011.08.016PubMedCrossRefGoogle Scholar
  87. Zimmermann FK, Entian K-D (1997) Yeast Sugar Metabolism. CRC Press, Boca RatonGoogle Scholar
  88. Zimmermann FK, Scheel I (1977) Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression. Mol Gen Genet MGG 154:75–82PubMedCrossRefGoogle Scholar
  89. Zimmermann FK, Kaufmann I, Rasenberger H, Haubetamann P (1977) Genetics of carbon catabolite repression in Saccharomycess cerevisiae: genes involved in the derepression process. Mol Gen Genet MGG 151:95–103PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tiina Alamäe
    • 1
    Email author
  • Katrin Viigand
    • 1
  • Kristina Põšnograjeva
    • 1
  1. 1.Department of Genetics, Institute of Molecular and Cell BiologyUniversity of TartuTartuEstonia

Personalised recommendations