Advertisement

Perception and Cognition in Medical Imaging

  • Haris Chrysikopoulos
Chapter

Abstract

Visual assessment proceeds simultaneously at two levels: a rapid overview of the entire image as a unit, and a slow deliberate scrutiny of selected parts of the image. Our visual behavior is intertwined with our cognitive labor of data analysis and data synthesis, and is supported by our experience and fund of knowledge. Our attention is easily drawn to any obvious patterns and any obvious isolated findings. At the same time we can direct our gaze and attention to specific parts of the image, at will, depending on the clinical question, the patient’s history, and any obvious imaging findings. Biases and errors, such as inattentional blindness, hinder our ability to evaluate the image objectively and thus we may not “pick up” a crucial or a pertinent finding.

References

  1. 1.
    Waite S, Scott J, Gale B, Fuchs T, Kolla S, Reede D. Interpretive error in radiology. AJR. 2017;208:739–49.CrossRefGoogle Scholar
  2. 2.
    Bui-Mansfield LT. “Fool me twice”: delayed diagnoses in radiology with emphasis on perpetuated errors. Video lecture. https://learning.arrs.org/course/view.php?id=518. Accessed 19 Nov 2017.
  3. 3.
    Rosenkrantz AB, Bansal NK. Diagnostic errors in abdominopelvic CT interpretation: characterization based on report addenda. Abdom Radiol. 2016;41:1793–9.CrossRefGoogle Scholar
  4. 4.
    Kabadi SJ, Krishmaraj A. Strategies for improving the value of the radiology report: a retrospective analysis of errors in formally over-read studies. J Am Coll Radiol. 2017;14:459–66.CrossRefGoogle Scholar
  5. 5.
    Bruno MA, Walker EA, Abujudeh HH. Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction. Radiographics. 2015;35:1668–76.CrossRefGoogle Scholar
  6. 6.
    Berlin L. Radiologic errors, past, present and future. Diagnosis. 2014;1:79–84.CrossRefGoogle Scholar
  7. 7.
    Kim YW, Mansfield LT. Fool me twice: delayed diagnoses in radiology with emphasis on perpetuated errors. AJR. 2014;202:465–70.CrossRefGoogle Scholar
  8. 8.
    McCreadie G, Oliver TB. Eight CT lessons that we learned the hard way: an analysis of current patterns of radiological error and discrepancy with particular emphasis on CT. Clin Radiol. 2009;64:491–9.CrossRefGoogle Scholar
  9. 9.
    Donald JJ, Barnard SA. Common patterns in 558 diagnostic radiology errors. J Med Imaging Radiat Oncol. 2012;56:173–8.CrossRefGoogle Scholar
  10. 10.
    Funaki B, Szymski G, Rosenblum J. Significant on-call misses by radiology residents interpreting computed tomographic studies: perception versus cognition. Emerg Radiol. 1997;4:290–4.CrossRefGoogle Scholar
  11. 11.
    Renfrew DL, Franken EA Jr, Berbaum KS, Weigelt FH, Abu-Yousef MM. Error in radiology: classification and lessons in 182 cases presented at a problem case conference. Radiology. 1992;183:145–50.CrossRefGoogle Scholar
  12. 12.
    Kundel HL, Nodine CF. Interpreting chest radiographs without visual search. Radiology. 1975;116:527–32.CrossRefGoogle Scholar
  13. 13.
    Kundel HL, Nodine CF, Conant EF, Weinstein SP. Holistic component of image perception in mammogram interpretation: gaze tracking study. Radiology. 2007;242:396–402.CrossRefGoogle Scholar
  14. 14.
    Kundel HL, Nodine CF, Krupinski EA, Mello-Thoms C. Using gaze-tracking data and mixture distribution analysis to support a holistic model for the detection of cancers on mammograms. Acad Radiol. 2008;15:881–6.CrossRefGoogle Scholar
  15. 15.
    Oestmann JW, Greene R, Bourgouin PM, Linetsky L, Llewellyn HJ. Chest “gestalt” and detectability of lung lesions. Eur J Radiol. 1993;16:154–7.CrossRefGoogle Scholar
  16. 16.
    Oestmann JW, Greene R, Kushner DC, Bourgouin PM, Linetsky L, Llewellyn HJ. Lung lesions: correlation between viewing time and detection. Radiology. 1988;166:451–3.CrossRefGoogle Scholar
  17. 17.
    Toms A. Shades of grey: perception and performance in radiology. The Royal College of Radiologists continued professional development library-public lectures. Date of lecture: 4 November 2015. https://videos.rcr.ac.uk/videoPlayer/?vid=384&class=videoThumbOdd. Accessed 15 Sept 2016.
  18. 18.
    Drew T, Evans K, Vo ML, Jacobson FL, Wolfe JM. Informatics in radiology: what can you see in a single glance and how this might guide visual search in medical images? Radiographics. 2013;33:263–74.CrossRefGoogle Scholar
  19. 19.
    Kundel HL. Visual search and lung nodule detection on CT scans. Radiology. 2015;274:14–6.CrossRefGoogle Scholar
  20. 20.
    Sheridan H, Reingold EM. The holistic processing account of visual expertise in medical image perception: a review. Front Psychol. 2017;8:1620.  https://doi.org/10.3389/fpsyg.2017.01620.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kok EM, Jarodzka H, de Bruin ABH, BinAmir HAN, Robben SGF, van Merrienboer JJG. Systematic viewing in radiology: seeing more, missing less? Adv Health Sci Educ Theory Pract. 2016;21:189–205.CrossRefGoogle Scholar
  22. 22.
    Kelly BS, Rainford LA, Darcy SP, Kavanagh EC, Toomey RJ. The development of expertise in radiology: in chest radiograph interpretation, “expert” search pattern may predate “expert” levels of diagnostic accuracy for pneumothorax identification. Radiology. 2016;280:252–60.CrossRefGoogle Scholar
  23. 23.
    Rubin GD, Roos JE, Tall M, et al. Characterizing search, recognition and decision in the detection of lung nodules on CT scans: elucidation with eye tracking. Radiology. 2015;274:276–86.CrossRefGoogle Scholar
  24. 24.
    Drew T, Vo MLH, Olwal A, Jacobson F, Seltzer SS. Scanners and drillers: characterizing expert visual search through volumetric images. J Vis. 2013;13:1–13.CrossRefGoogle Scholar
  25. 25.
    Wood G, Knapp KM, Rock B, Cousens C, Roobottom C, Wilson MR. Visual expertise in detecting and diagnosing skeletal fractures. Skelet Radiol. 2013;42:165–72.CrossRefGoogle Scholar
  26. 26.
    Bertram R, Helle L, Kaakinene JK, Svedstrom E. The effect of expertise on eye movement behavior in medical image perception. PLoS One. 2013;8:e66169.  https://doi.org/10.1371/journal.pone.0066169.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Matsumoto H, Terao Y, Yugeta A, et al. Where do neurologists look when viewing brain CT images? An eye-tracking study involving stroke cases. PLoS One. 2011;6:e28928.  https://doi.org/10.1371/journal.pone.0028928.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Manning DJ, Barker-Mill SC, Donovan T, Crawford T. Time-dependent observer errors in pulmonary nodule detection. Br J Radiol. 2006;79:342–6.CrossRefGoogle Scholar
  29. 29.
    Manning D, Ethell S, Donovan T, Crawford T. How do radiologists do it? The influence of experience and training on searching for chest nodules. Radiography. 2006;12:134–42.CrossRefGoogle Scholar
  30. 30.
    Kundel HL, Nodine CF, Carmody D. Visual scanning, pattern recognition and decision-making in pulmonary nodule detection. Investig Radiol. 1987;13:175–81.CrossRefGoogle Scholar
  31. 31.
    Norman GR, Coblentz CL, Brooks LR, Badcook CJ. Expertise in visual diagnosis: a review of the literature. Acad Med. 1992;67:S78–83.CrossRefGoogle Scholar
  32. 32.
    Brazeau-Lamontagne L, Charlin B, Gagnon R, Samson L, van der Vleuten C. Measurement of perception and interpretation skills during radiology training: utility of the script concordance approach. Med Teach. 2004;26:326–32.CrossRefGoogle Scholar
  33. 33.
    Van Meeuwen LW, Jarodzka H, Brand-Gruwel S, Kirschner PA, de Bock JJPR, van Merrienboer JJG. Identification of effective visual problem solving strategies in a complex visual domain. Learn Instr. 2014;32:10–21.CrossRefGoogle Scholar
  34. 34.
    van der Gijp A, Ravesloot CJ, Jarodzka H, et al. How visual search relates to visual diagnostic performance: a narrative systematic review of eye-tracking research in radiology. Adv Health Sci Educ Theory Pract. 2017;22:765–87.CrossRefGoogle Scholar
  35. 35.
    van der Gijp A, van der Schaaf MF, van der Schaaf IC, et al. Interpretation of radiological images: towards a framework of knowledge and skills. Adv Health Sci Educ Theory Pract. 2014;19:565–80.CrossRefGoogle Scholar
  36. 36.
    Chrysikopoulos H. Basics of MR examinations and interpretation. In: Clinical MR imaging and physics: a tutorial. Heidelberg: Springer; 2009. p. 109–64.Google Scholar
  37. 37.
    Morita J, Miwa K, Kitasaka T, et al. Interactions of perceptual and conceptual processing: expertise in medical image diagnosis. Int J Human-Comput Stud. 2008;66:370–90.CrossRefGoogle Scholar
  38. 38.
    Wolfe JM, Evans KK, Drew T, Aizenman A, Josephs E. How do radiologists use the human search engine? Radiat Prot Dosim. 2016;169:24–31.CrossRefGoogle Scholar
  39. 39.
    Drew T, Vo ML, Wolfe JM. The invisible gorilla strikes again: sustained inattentional blindness in expert observers. Psychol Sci. 2013;24:1848–53.CrossRefGoogle Scholar
  40. 40.
    Simons DJ, Chabris CF. Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception. 1999;28:1059–74.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Haris Chrysikopoulos
    • 1
  1. 1.CT & MR DivisionEurodiagnosis Imaging CenterCorfuGreece

Personalised recommendations