Overview on the Food Industry and Its Advancement

  • Mehrdad NiakousariEmail author
  • Sara Hedayati
  • Zahra Tahsiri
  • Hamide Mirzaee


Over the last 100 years, traditional food processing operations have been industrialized and aimed to decrease the losses and waste of food products and increase their quality, shelf life and optimize nutrient availability. However, such treatments may negatively affect the organoleptic and nutritional properties of foods. Accordingly, food scientists and manufacturers has long sought efficient alternatives to fulfill the requirements of food industry. Therefore, in recent years the application of novel and emerging processing technologies such as high pressure processing (HPP), pulsed electric field (PEF), microwave heating (MWH), radio frequency heating (RF), radiation, infrared heating, ohmic heating, ozone, supercritical CO2, etc. has become more prevalent in different aspects of food processing including sterilization and pasteurization, degradation of toxins, modification of hydrocolloids, removal of antibiotics, reduction of insects, peeling, extraction, cooking, blanching, drying, thawing, tempering, concentration, etc. These technologies have improved the availability and quality of food products while being more fast, energy effective and eco-friendly in comparison to conventional heat treatments.


  1. Achir, N., Dhuique-Mayer, C., Hadjal, T., Madani, K., Pain, J. P., & Dornier, M. (2016). Pasteurization of citrus juices with ohmic heating to preserve the carotenoid profile. Innovative Food Science & Emerging Technologies, 33, 397–404.CrossRefGoogle Scholar
  2. ADA (2000). Position of The American Dietetic Association. Journal of the American Dietetic Association, 100(2), 246–253.Google Scholar
  3. Adak, N., Heybeli, N., & Ertekin, C. (2017). Infrared drying of strawberry. Food Chemistry, 219, 109–116.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alegbeleye, O. O., Guimarães, J. T., Cruz, A. G., & Sant’Ana, A. S. (2018). Hazards of a ‘healthy’trend? An appraisal of the risks of raw milk consumption and the potential of novel treatment technologies to serve as alternatives to pasteurization. Trends in Food Science & Technology, 82, 148–166.CrossRefGoogle Scholar
  5. Alfaifi, B., Tang, J., Rasco, B., Wang, S., & Sablani, S. (2016). Computer simulation analyses to improve radio frequency (RF) heating uniformity in dried fruits for insect control. Innovative Food Science & Emerging Technologies, 37, 125–137.CrossRefGoogle Scholar
  6. Alsager, O. A., Alnajrani, M. N., Abuelizz, H. A., & Aldaghmani, I. A. (2018). Removal of antibiotics from water and waste milk by ozonation: Kinetics, byproducts, and antimicrobial activity. Ecotoxicology and Environmental Safety, 158, 114–122.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Amaral, G. V., Silva, E. K., Cavalcanti, R. N., Martins, C. P., Andrade, L. G. Z., Moraes, J., Alvarenga, V. O., Guimarães, J. T., Esmerino, E. A., Freitas, M. Q., & Silva, M. C. (2018). Whey-grape juice drink processed by supercritical carbon dioxide technology: Physicochemical characteristics, bioactive compounds and volatile profile. Food Chemistry, 239, 697–703.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Anderson, A. K., & Finkelstein, R. (1919). A study of the electropure process of treating milk. Journal of Dairy Science, 2(5), 374–406.CrossRefGoogle Scholar
  9. Barbosa-Canovas, G. V., Albaali, A. G., Juliano, P., & Knoerzer, K. (2011). Introduction to innovative food processing technologies: Background, advantages, issues and need for multiphysics modeling. In Innovative food processing technologies: Advances in Multiphysics simulation (pp. 3–23). UK: IFT Press, Wiley-Blackwell.Google Scholar
  10. Behrens, J. H., Barcellos, M. N., Frewer, L. J., Nunes, T. P., & Landgraf, M. (2009). Brazilian consumer views on food irradiation. Innovative Food Science & Emerging Technologies, 10(3), 383–389.CrossRefGoogle Scholar
  11. Blackburn, C. (2017). Food irradiation technologies: Concepts, applications and outcomes (Vol. 4). London: Royal Society of Chemistry.Google Scholar
  12. Calado, T., Fernández-Cruz, M. L., Verde, S. C., Venâncio, A., & Abrunhosa, L. (2018). Gamma irradiation effects on ochratoxin A: Degradation, cytotoxicity and application in food. Food Chemistry, 240, 463–471.PubMedCrossRefGoogle Scholar
  13. Carreño, I. (2017). International standards and regulation on food irradiation. In I. C. F. R. Ferreira, A. L. Antonio, & S. C. Verde (Eds.), Food irradiation technologies: Concepts, applications and outcomes (pp. 5–27). London: Royal Society of ChemistryGoogle Scholar
  14. Castanha, N., da Matta Junior, M. D., & Augusto, P. E. D. (2017). Potato starch modification using the ozone technology. Food Hydrocolloids, 66, 343–356.CrossRefGoogle Scholar
  15. Cho, W. I., Yi, J. Y., & Chung, M. S. (2016). Pasteurization of fermented red pepper paste by ohmic heating. Innovative Food Science & Emerging Technologies, 34, 180–186.CrossRefGoogle Scholar
  16. Choi, E. J., Yang, H. S., Park, H. W., & Chun, H. H. (2018). Inactivation of Escherichia coli O157: H7 and Staphylococcus aureus in red pepper powder using a combination of radio frequency thermal and indirect dielectric barrier discharge plasma non-thermal treatments. LWT, 93, 477–484.CrossRefGoogle Scholar
  17. Chung, C. C., Huang, T. C., Li, C. Y., & Chen, H. H. (2013). Agriproducts sterilization and optimization by using supercritical carbon dioxide fluid (SC-CO2). In 4th International Conference on Food Engineering and Biotechnology Singapore (pp. 1–8).Google Scholar
  18. Cullen, P. J., Tiwari, B. K., & Valdramidis, V. P. (2012). Status and trends of novel thermal and non-thermal technologies for fluid foods. In Novel thermal and non-thermal technologies for fluid foods (pp. 1–6). Cambridge: Academic press.Google Scholar
  19. De Silva, G. O., Abeysundara, A. T., Minoli, M., & Aponso, W. (2018). Impacts of pulsed electric field (PEF) technology in different approaches of food industry: A review. Journal of Pharmacognosy and Phytochemistry, 7(2), 737–740.Google Scholar
  20. de Souza, L. P., Faroni, L. R. D. A., Heleno, F. F., Cecon, P. R., Gonçalves, T. D. C., da Silva, G. J., & Prates, L. H. F. (2018). Effects of ozone treatment on postharvest carrot quality. LWT, 90, 53–60.CrossRefGoogle Scholar
  21. de Toledo Guimarães, J., Silva, E. K., de Freitas, M. Q., de Almeida Meireles, M. A., & da Cruz, A. G. (2018). Non-thermal emerging technologies and their effects on the functional properties of dairy products. Current Opinion in Food Science, 22, 62–66.CrossRefGoogle Scholar
  22. Deeth, H. C., & Lewis, M. J. (2017). High temperature processing of milk and milk products. Hoboken: Wiley.CrossRefGoogle Scholar
  23. del Valle, J. M. (2015). Extraction of natural compounds using supercritical CO2: Going from the laboratory to the industrial application. The Journal of Supercritical Fluids, 96, 180–199.CrossRefGoogle Scholar
  24. Derrien, M., Aghabararnejad, M., Gosselin, A., Desjardins, Y., Angers, P., & Boumghar, Y. (2018). Optimization of supercritical carbon dioxide extraction of lutein and chlorophyll from spinach by-products using response surface methodology. LWT, 93, 79–87.CrossRefGoogle Scholar
  25. Di Giacomo, G., Scimia, F., & Taglieri, L. (2016). Application of supercritical carbon dioxide for the preservation of fresh-like carrot juice. International Journal of New Technology and Research, 2(2), 71–77.Google Scholar
  26. Diehl, J. F. (1999). Safety of irradiated foods. Boca Raton: CRC Press.Google Scholar
  27. Ding, C., Khir, R., Pan, Z., Zhao, L., Tu, K., El-Mashad, H., & McHugh, T. H. (2015). Improvement in shelf life of rough and brown rice using infrared radiation heating. Food and Bioprocess Technology, 8(5), 1149–1159.CrossRefGoogle Scholar
  28. Doona, C. J. (Ed.). (2010). Case studies in novel food processing technologies: Innovations in processing, packaging, and predictive modelling. London: Elsevier.Google Scholar
  29. Duranton, F., Simonin, H., Guyon, C., Jung, S., & de Lamballerie, M. (2014). High-pressure processing of meats and seafood. In Emerging technologies for food processing (pp. 35–63). Cambridge: Academic press.Google Scholar
  30. Erdogdu, F., Altin, O., Marra, F., & Bedane, T. F. (2017). A computational study to design process conditions in industrial radio-frequency tempering/thawing process. Journal of Food Engineering, 213, 99–112.CrossRefGoogle Scholar
  31. Eskandari, J., Kermani, A. M., Kouravand, S., & Zarafshan, P. (2018). Design, fabrication, and evaluation a laboratory dry-peeling system for hazelnut using infrared radiation. LWT, 90, 570–576.CrossRefGoogle Scholar
  32. Evans, G., & Cox, D. N. (2006). Australian consumers’ antecedents of attitudes towards foods produced by novel technologies. British Food Journal, 108(11), 916–930.CrossRefGoogle Scholar
  33. Farahnaky, A., Azizi, R., & Gavahian, M. (2012). Accelerated texture softening of some root vegetables by ohmic heating. Journal of Food Engineering, 113(2), 275–280.CrossRefGoogle Scholar
  34. FDA. (2009). Chapter IV. Outbreaks Associated with Fresh and Fresh-Cut Produce. Incidence, Growth, and Survival of Pathogens in Fresh and Fresh-Cut Produce.
  35. Fundo, J. F., Miller, F. A., Tremarin, A., Garcia, E., Brandão, T. R., & Silva, C. L. (2018). Quality assessment of Cantaloupe melon juice under ozone processing. Innovative Food Science & Emerging Technologies, 47, 461–466.CrossRefGoogle Scholar
  36. GAO, (2000). Food Irradiation: Available Research Indicates that Benefits Outweigh Risks. U.S. General Accounting Office, GAO/RCED-00-217.
  37. García-Risco, M. R., Hernández, E. J., Vicente, G., Fornari, T., Señoráns, F. J., & Reglero, G. (2011). Kinetic study of pilot-scale supercritical CO2 extraction of rosemary (Rosmarinus officinalis) leaves. The Journal of Supercritical Fluids, 55(3), 971–976.CrossRefGoogle Scholar
  38. Gili, R. D., Palavecino, P. M., Penci, M. C., Martinez, M. L., & Ribotta, P. D. (2017). Wheat germ stabilization by infrared radiation. Journal of Food Science and Technology, 54(1), 71–81.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gomes, C. F., Sarkis, J. R., & Marczak, L. D. F. (2018). Ohmic blanching of Tetsukabuto pumpkin: Effects on peroxidase inactivation kinetics and color changes. Journal of Food Engineering, 233, 74–80.CrossRefGoogle Scholar
  40. Grahl, T., & Märkl, H. (1996). Killing of microorganisms by pulsed electric fields. Applied Microbiology and Biotechnology, 45(1–2), 148–157.PubMedCrossRefGoogle Scholar
  41. Granella, S. J., Christ, D., Werncke, I., Bechlin, T. R., & Coelho, S. R. M. (2018). Effect of drying and ozonation process on naturally contaminated wheat seeds. Journal of Cereal Science, 80, 205–211.CrossRefGoogle Scholar
  42. Hu, G., Zheng, Y., Liu, Z., Xiao, Y., Deng, Y., & Zhao, Y. (2017). Effects of high hydrostatic pressure, ultraviolet light-C, and far-infrared treatments on the digestibility, antioxidant and antihypertensive activity of α-casein. Food Chemistry, 221, 1860–1866.PubMedCrossRefGoogle Scholar
  43. Huang, Z., Zhang, B., Marra, F., & Wang, S. (2016). Computational modelling of the impact of polystyrene containers on radio frequency heating uniformity improvement for dried soybeans. Innovative Food Science & Emerging Technologies, 33, 365–380.CrossRefGoogle Scholar
  44. Hunt, N. K., & Mariñas, B. J. (1999). Inactivation of Escherichia coli with ozone: Chemical and inactivation kinetics. Water Research, 33(11), 2633–2641.CrossRefGoogle Scholar
  45. Icier, F., Yildiz, H., Sabanci, S., Cevik, M., & Cokgezme, O. F. (2017). Ohmic heating assisted vacuum evaporation of pomegranate juice: Electrical conductivity changes. Innovative Food Science & Emerging Technologies, 39, 241–246.CrossRefGoogle Scholar
  46. Ilgaz, S., Sat, I. G., & Polat, A. (2018). Effects of processing parameters on the caffeine extraction yield during decaffeination of black tea using pilot-scale supercritical carbon dioxide extraction technique. Journal of Food Science and Technology, 55(4), 1407–1415.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Irakli, M., Kleisiaris, F., Mygdalia, A., & Katsantonis, D. (2018). Stabilization of rice bran and its effect on bioactive compounds content, antioxidant activity and storage stability during infrared radiation heating. Journal of Cereal Science, 80, 135–142.CrossRefGoogle Scholar
  48. Jermann, C., Koutchma, T., Margas, E., Leadley, C., & Ros-Polski, V. (2015). Mapping trends in novel and emerging food processing technologies around the world. Innovative Food Science & Emerging Technologies, 31, 14–27.CrossRefGoogle Scholar
  49. Jiang, Y., Wang, S., He, F., Fan, Q., Ma, Y., Yan, W., Tang, Y., Yang, R., & Zhao, W. (2018). Inactivation of lipoxygenase in soybean by radio frequency treatment. International Journal of Food Science & Technology, 53(12), 2738–2747.CrossRefGoogle Scholar
  50. Kalla, A. M. (2017). Microwave energy and its application in food industry: A review. Asian Journal of Dairy & Food Research, 36(1), 37–44.Google Scholar
  51. Kanjanapongkul, K. (2017). Rice cooking using ohmic heating: Determination of electrical conductivity, water diffusion and cooking energy. Journal of Food Engineering, 192, 1–10.CrossRefGoogle Scholar
  52. Kempkes, M., Simpson, R., & Roth, I. (2016). Removing barriers to commercialization of PEF systems and processes. In Proceedings of 3rd School on Pulsed Electric Field Processing of Food (pp. 1–6). Dublin: Institute of Food and Health, University College Dublin.Google Scholar
  53. Kettler, K., Adhikari, K., & Singh, R. K. (2017). Blanchability and sensory quality of large runner peanuts blanched in a radiant wall oven using infrared radiation. Journal of the Science of Food and Agriculture, 97(13), 4621–4628.PubMedCrossRefGoogle Scholar
  54. Khadre, M. A., Yousef, A. E., & Kim, J. G. (2001). Microbiological aspects of ozone applications in food: A review. Journal of Food Science, 66(9), 1242–1252.CrossRefGoogle Scholar
  55. Kim, J. G., Yousef, A. E., & Dave, S. (1999). Application of ozone for enhancing the microbiological safety and quality of foods: A review. Journal of Food Protection, 62(9), 1071–1087.PubMedCrossRefGoogle Scholar
  56. Kim, S. Y., Sagong, H. G., Choi, S. H., Ryu, S., & Kang, D. H. (2012). Radio-frequency heating to inactivate Salmonella Typhimurium and Escherichia coli O157: H7 on black and red pepper spice. International Journal of Food Microbiology, 153(1–2), 171–175.PubMedCrossRefGoogle Scholar
  57. Kirmaci, B., & Singh, R. K. (2012). Quality of chicken breast meat cooked in a pilot-scale radio frequency oven. Innovative Food Science & Emerging Technologies, 14, 77–84.CrossRefGoogle Scholar
  58. Knez, Ž., Markočič, E., Leitgeb, M., Primožič, M., Hrnčič, M. K., & Škerget, M. (2014). Industrial applications of supercritical fluids: A review. Energy, 77, 235–243.CrossRefGoogle Scholar
  59. Knoerzer, K., Buckow, R., Trujillo, F. J., & Juliano, P. (2015). Multiphysics simulation of innovative food processing technologies. Food Engineering Reviews, 7(2), 64–81.CrossRefGoogle Scholar
  60. Lascorz, D., Torella, E., Lyng, J. G., & Arroyo, C. (2016). The potential of ohmic heating as an alternative to steam for heat processing shrimps. Innovative Food Science & Emerging Technologies, 37, 329–335.CrossRefGoogle Scholar
  61. Leadley, C. (2008). Novel commercial preservation methods. In G. S. Tucker (Ed.), Food biodeterioration and preservation (pp. 211–242). Hoboken: Blackwell Publishing.CrossRefGoogle Scholar
  62. Liao, M., Zhao, Y., Gong, C., Zhang, H., & Jiao, S. (2018). Effects of hot air-assisted radio frequency roasting on quality and antioxidant activity of cashew nut kernels. LWT, 93, 274–280.CrossRefGoogle Scholar
  63. Ling, B., Lyng, J. G., & Wang, S. (2018). Effects of hot air-assisted radio frequency heating on enzyme inactivation, lipid stability and product quality of rice bran. LWT, 91, 453–459.CrossRefGoogle Scholar
  64. Luo, X., Wang, R., Wang, L., Li, Y., Bian, Y., & Chen, Z. (2014). Effect of ozone treatment on aflatoxin B1 and safety evaluation of ozonized corn. Food Control, 37, 171–176.CrossRefGoogle Scholar
  65. Mahapatra, A. K., Muthukumarappan, K., & Julson, J. L. (2005). Applications of ozone, bacteriocins and irradiation in food processing: A review. Critical Reviews in Food Science and Nutrition, 45(6), 447–461.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Mans, J., & Swientek, B. (1993). Electrifying progress in aseptic technology. Prepared foods, 162(9), 151–156.Google Scholar
  67. Meda, V., Orsat, V., & Raghavan, V. (2017). Microwave heating and the dielectric properties of foods. In The microwave processing of foods (pp. 23–43). Cambridge: Woodhead Publishing.Google Scholar
  68. Michelino, F., Zambon, A., Vizzotto, M. T., Cozzi, S., & Spilimbergo, S. (2018). High power ultrasound combined with supercritical carbon dioxide for the drying and microbial inactivation of coriander. Journal of CO2 Utilization, 24, 516–521.CrossRefGoogle Scholar
  69. Mittendorfer, J. (2016). Food irradiation facilities: Requirements and technical aspects. Radiation Physics and Chemistry, 129, 61–63.CrossRefGoogle Scholar
  70. Muntean, M. V., Marian, O., Barbieru, V., Cătunescu, G. M., Ranta, O., Drocas, I., & Terhes, S. (2016). High pressure processing in food industry–characteristics and applications. Agriculture and Agricultural Science Procedia, 10, 377–383.CrossRefGoogle Scholar
  71. Muthukumarappan, K. (2011). Ozone processing. In D. W. Sun (Ed.) Handbook of food safety engineering (pp. 681–692), 681–692. West Sussex: Wiley-Blackwell.Google Scholar
  72. Muthukumarappan, K., Halaweish, F., & Naidu, A. S. (2000). Ozone. In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 796–813). Boca Raton: CRC Press.Google Scholar
  73. Muthukumarappan, K., Julson, J. L., Mahapatra, A. K., & Nanda, S. K. (2002). Ozone applications in food processing. In Souvenir 2002—-Proc. College of Agric. Eng. Technol. alumnai meet (pp. 32–35).Google Scholar
  74. Nagaraj, G., Purohit, A., Harrison, M., Singh, R., Hung, Y. C., & Mohan, A. (2016). Radiofrequency pasteurization of inoculated ground beef homogenate. Food Control, 59, 59–67.CrossRefGoogle Scholar
  75. Niemira, B. A., & Gao, M. (2012). Irradiation of fluid foods. In P.J. Cullen, B.K. Tiwari, V. Valdramidis (Eds.), Novel thermal and non-thermal Technologies for Fluid Foods (pp. 167–183). Cambridge: Academic press.Google Scholar
  76. Omar, A. M., Norsalwani, T. T., Asmah, M. S., Badrulhisham, Z. Y., Easa, A. M., Omar, F. M., Hossain, M. S., Zuknik, M. H., & Norulaini, N. N. (2018). Implementation of the supercritical carbon dioxide technology in oil palm fresh fruits bunch sterilization: A review. Journal of CO2 Utilization, 25, 205–215.CrossRefGoogle Scholar
  77. Oualid, H. A., Amadine, O., Essamlali, Y., Dânoun, K., & Zahouily, M. (2018). Supercritical CO2 drying of alginate/zinc hydrogels: A green and facile route to prepare ZnO foam structures and ZnO nanoparticles. RSC Advances, 8(37), 20737–20747.CrossRefGoogle Scholar
  78. Ozturk, S., Kong, F., Trabelsi, S., & Singh, R. K. (2016). Dielectric properties of dried vegetable powders and their temperature profile during radio frequency heating. Journal of Food Engineering, 169, 91–100.CrossRefGoogle Scholar
  79. Ozturk, S., Kong, F., Singh, R. K., Kuzy, J. D., Li, C., & Trabelsi, S. (2018). Dielectric properties, heating rate, and heating uniformity of various seasoning spices and their mixtures with radio frequency heating. Journal of Food Engineering, 228, 128–141.CrossRefGoogle Scholar
  80. Palazoğlu, T. K., & Miran, W. (2018). Experimental investigation of the effect of conveyor movement and sample’s vertical position on radio frequency tempering of frozen beef. Journal of Food Engineering, 219, 71–80.CrossRefGoogle Scholar
  81. Patil, S., & Bourke, P. (2012). Ozone processing of fluid foods. In Novel thermal and non-thermal technologies for fluid foods (pp. 225–261). Cambridge: Academic press.Google Scholar
  82. Pawar, S. B., & Pratape, V. M. (2017). Fundamentals of infrared heating and its application in drying of food materials: A review. Journal of Food Process Engineering, 40(1), e12308.CrossRefGoogle Scholar
  83. Pereira, R. N., & Vicente, A. A. (2010). Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International, 43(7), 1936–1943.CrossRefGoogle Scholar
  84. Pereira, R. N., Rodrigues, R. M., Genisheva, Z., Oliveira, H., de Freitas, V., Teixeira, J. A., & Vicente, A. A. (2016). Effects of ohmic heating on extraction of food-grade phytochemicals from colored potato. LWT, 74, 493–503.CrossRefGoogle Scholar
  85. Perrut, M. (2012). Sterilization and virus inactivation by supercritical fluids (a review). The Journal of Supercritical Fluids, 66, 359–371.CrossRefGoogle Scholar
  86. Rahman, M. S., Seo, J. K., Choi, S. G., Gul, K., & Yang, H. S. (2018). Physicochemical characteristics and microbial safety of defatted bovine heart and its lipid extracted with supercritical-CO2 and solvent extraction. LWT, 97, 355–361.CrossRefGoogle Scholar
  87. Ramaswamy, R., Jin, T., Balasubramaniam, V. M., & Zhang, H. (2005). Pulsed electric field processing: fact sheet for food processors. Ohio State University Extension Factsheet, 22.Google Scholar
  88. Rawson, A., Tiwari, B. K., Brunton, N., Brennan, C., Cullen, P. J., & O’donnell, C. P. (2012). Application of supercritical carbon dioxide to fruit and vegetables: Extraction, processing, and preservation. Food Reviews International, 28(3), 253–276.CrossRefGoogle Scholar
  89. Riadh, M. H., Ahmad, S. A. B., Marhaban, M. H., & Soh, A. C. (2015). Infrared heating in food drying: An overview. Drying Technology, 33(3), 322–335.CrossRefGoogle Scholar
  90. Rice, R. G., Overbeck, P., & Larson, K. A. (2000). Costs of ozone in small drinking water systems. In Proc. Small drinking water and wastewater systems. Ann Arbor: NSF International.Google Scholar
  91. Rincon, A. M., Singh, R. K., & Stelzleni, A. M. (2015). Effects of endpoint temperature and thickness on quality of whole muscle non-intact steaks cooked in a radio frequency oven. LWT-Food Science and Technology, 64(2), 1323–1328.CrossRefGoogle Scholar
  92. Ruan, R., Ye, X., Chen, P., Doona, C. J., Taub, I., & Center, N. S. (2001). Ohmic heating. In P. Richardson (Ed.), Thermal technologies in food processing (pp. 241–265). Boca Raton: CRC Press.CrossRefGoogle Scholar
  93. Sabanci, S., & Icier, F. (2017). Applicability of ohmic heating assisted vacuum evaporation for concentration of sour cherry juice. Journal of Food Engineering, 212, 262–270.CrossRefGoogle Scholar
  94. Saberian, H., Hamidi-Esfahani, Z., Gavlighi, H. A., & Barzegar, M. (2017). Optimization of pectin extraction from orange juice waste assisted by ohmic heating. Chemical Engineering and Processing: Process Intensification, 117, 154–161.CrossRefGoogle Scholar
  95. Sarkis, J. R., Jaeschke, D. P., Tessaro, I. C., & Marczak, L. D. (2013). Effects of ohmic and conventional heating on anthocyanin degradation during the processing of blueberry pulp. LWT-Food Science and Technology, 51(1), 79–85.CrossRefGoogle Scholar
  96. Schlisselberg, D. B., Kler, E., Kalily, E., Kisluk, G., Karniel, O., & Yaron, S. (2013). Inactivation of foodborne pathogens in ground beef by cooking with highly controlled radio frequency energy. International Journal of Food Microbiology, 160(3), 219–226.PubMedCrossRefGoogle Scholar
  97. Smith, J. S., & Pillai, S. (2004). Irradiation and food safety. Food Technology, 58(11), 48–55.Google Scholar
  98. Soares, V. B., & Coelho, G. L. (2012). Safety study of an experimental apparatus for extraction with supercritical CO2. Brazilian Journal of Chemical Engineering, 29(3), 677–682.CrossRefGoogle Scholar
  99. Subramaniam, B. (2017). Sustainable processes with supercritical fluids. In: Encyclopedia of Sustainable Technologies, Pages 653–662. Elsevier, UK.Google Scholar
  100. Tello, J., Viguera, M., & Calvo, L. (2011). Extraction of caffeine from Robusta coffee (Coffea canephora var. Robusta) husks using supercritical carbon dioxide. The Journal of Supercritical Fluids, 59, 53–60.CrossRefGoogle Scholar
  101. Termrittikul, P., Jittanit, W., & Sirisansaneeyakul, S. (2018). The application of ohmic heating for inulin extraction from the wet-milled and dry-milled powders of Jerusalem artichoke (Helianthus tuberosus L.) tuber. Innovative Food Science & Emerging Technologies, 48, 99–110.CrossRefGoogle Scholar
  102. Thayer, D. W., & Boyd, G. (1995). Radiation sensitivity of Listeria monocytogenes on beef as affected by temperature. Journal of Food Science, 60(2), 237–240.CrossRefGoogle Scholar
  103. Tiwari, G., Wang, S., Tang, J., & Birla, S. L. (2011). Computer simulation model development and validation for radio frequency (RF) heating of dry food materials. Journal of Food Engineering, 105(1), 48–55.CrossRefGoogle Scholar
  104. Tuncel, N. B., Uygur, A., & Yüceer, Y. K. (2017). The effects of infrared roasting on HCN content, chemical composition and storage stability of flaxseed and flaxseed oil. Journal of the American Oil Chemists’ Society, 94(6), 877–884.CrossRefGoogle Scholar
  105. Turp, G. Y., Icier, F., & Kor, G. (2016). Influence of infrared final cooking on color, texture and cooking characteristics of ohmically pre-cooked meatball. Meat Science, 114, 46–53.CrossRefGoogle Scholar
  106. Valadez-Carmona, L., Ortiz-Moreno, A., Ceballos-Reyes, G., Mendiola, J. A., & Ibáñez, E. (2018). Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds. The Journal of Supercritical Fluids, 131, 99–105.CrossRefGoogle Scholar
  107. Van Bockstal, P. J., De Meyer, L., Corver, J., Vervaet, C., & De Beer, T. (2017). Noncontact infrared-mediated heat transfer during continuous freeze-drying of unit doses. Journal of Pharmaceutical Sciences, 106(1), 71–82.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Venkitasamy, C., Zhu, C., Brandl, M. T., Niederholzer, F. J., Zhang, R., McHugh, T. H., & Pan, Z. (2018). Feasibility of using sequential infrared and hot air for almond drying and inactivation of enterococcus faecium NRRL B-2354. LWT, 95, 123–128.CrossRefGoogle Scholar
  109. Wang, S., Tiwari, G., Jiao, S., Johnson, J. A., & Tang, J. (2010). Developing postharvest disinfestation treatments for legumes using radio frequency energy. Biosystems Engineering, 105(3), 341–349.CrossRefGoogle Scholar
  110. Wang, Y., Zhang, L., Johnson, J., Gao, M., Tang, J., Powers, J. R., & Wang, S. (2014). Developing hot air-assisted radio frequency drying for in-shell macadamia nuts. Food and Bioprocess Technology, 7(1), 278–288.CrossRefGoogle Scholar
  111. Wang, H. C., Zhang, M., & Adhikari, B. (2015). Drying of shiitake mushroom by combining freeze-drying and mid-infrared radiation. Food and Bioproducts Processing, 94, 507–517.CrossRefGoogle Scholar
  112. Wongsa-Ngasri, P., & Sastry, S. K. (2015). Effect of ohmic heating on tomato peeling. LWT-Food Science and Technology, 61(2), 269–274.CrossRefGoogle Scholar
  113. World Health Organization (WHO), 1999. High-Dose Irradiation: Wholesomeness of Food Irradiated with Doses above 10 KGy, Joint FAO/IAEA/WHO Study Group on HighDose Irradiation, Geneva, 1520 September 1997, WHO Technical Report Series 890Google Scholar
  114. Xie, L., Cahoon, E., Zhang, Y., & Ciftci, O. N. (2019). Extraction of astaxanthin from engineered Camelina sativa seed using ethanol-modified supercritical carbon dioxide. The Journal of Supercritical Fluids, 143, 171–178.CrossRefGoogle Scholar
  115. Xu, L. (1999). Use of ozone to improve the safety of fresh fruits and vegetables. Food Technology, 53, 58–63.Google Scholar
  116. Yalcin, S., & Basman, A. (2015). Effects of infrared treatment on urease, trypsin inhibitor and lipoxygenase activities of soybean samples. Food Chemistry, 169, 203–210.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Yılmaz, N. (2016). Middle infrared stabilization of individual rice bran milling fractions. Food Chemistry, 190, 179–185.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Zabot, G. L., Moraes, M. N., Petenate, A. J., & Meireles, M. A. A. (2014). Influence of the bed geometry on the kinetics of the extraction of clove bud oil with supercritical CO2. The Journal of Supercritical Fluids, 93, 56–66.CrossRefGoogle Scholar
  119. Zhang, X., Heinonen, S., & Levänen, E. (2014). Applications of supercritical carbon dioxide in materials processing and synthesis. RSC Advances, 4(105), 61137–61152.CrossRefGoogle Scholar
  120. Zhang, Z. S., Xie, Q. F., & Che, L. M. (2018). Effects of gamma irradiation on aflatoxin B1 levels in soybean and on the properties of soybean and soybean oil. Applied Radiation and Isotopes, 139, 224–230.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Zheng, A., Zhang, B., Zhou, L., & Wang, S. (2016). Application of radio frequency pasteurization to corn (Zea mays L.): Heating uniformity improvement and quality stability evaluation. Journal of Stored Products Research, 68, 63–72.CrossRefGoogle Scholar
  122. Zheng, A., Zhang, L., & Wang, S. (2017). Verification of radio frequency pasteurization treatment for controlling Aspergillus parasiticus on corn grains. International Journal of Food Microbiology, 249, 27–34.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Zhou, L., Ling, B., Zheng, A., Zhang, B., & Wang, S. (2015). Developing radio frequency technology for postharvest insect control in milled rice. Journal of Stored Products Research, 62, 22–31.CrossRefGoogle Scholar
  124. Zhu, F. (2018). Effect of ozone treatment on the quality of grain products. Food Chemistry, 264, 358.Google Scholar
  125. Zhu, H., Li, D., Ma, J., Du, Z., Li, P., Li, S., & Wang, S. (2018a). Radio frequency heating uniformity evaluation for mid-high moisture food treated with cylindrical electromagnetic wave conductors. Innovative Food Science & Emerging Technologies, 47, 56–70.CrossRefGoogle Scholar
  126. Zhu, X. H., Yang, Y. X., & Duan, Z. H. (2018b). Research progress on the effect of microwave sterilization on agricultural products quality. In IOP Conference Series: Earth and Environmental Science (Vol. 113, No. 1, p. 012096). Bristol: IOP Publishing.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mehrdad Niakousari
    • 1
    Email author
  • Sara Hedayati
    • 1
  • Zahra Tahsiri
    • 1
  • Hamide Mirzaee
    • 1
  1. 1.Department of Food Science and Technology, School of AgricultureShiraz UniversityShirazIran

Personalised recommendations