Advertisement

Cardiorenal Syndrome in a Patient with Mechanical Circulatory Support

  • Andrew Xanthopoulos
  • Filippos Triposkiadis
  • Randall C. StarlingEmail author
Chapter

Abstract

Cardiovascular diseases are often associated with concomitant or de novo kidney disease. Renal dysfunction is common in patients with advanced heart failure. Although irreversible renal dysfunction and treatment with renal replacement therapy are considered an absolute contraindication to left ventricular assist device (LVAD) implantation as destination therapy, advanced heart failure patients with recent onset renal dysfunction should not be excluded from LVAD treatment when improvement of renal function post LVAD is anticipated. The implantation of LVADs is accompanied by short-term improvements in renal function, whereas data on long-term outcomes is ambiguous. Acute kidney injury (AKI) is not uncommon after LVAD implantation and it is accompanied by high mortality rates. Whether the type of mechanical circulatory support (MCS) device (pulsatile vs non-pulsatile) has a different effect on renal function remains unknown. The emerging role of percutaneous, short-term MCS devices for the restoration or the preservation of renal function is promising.

Keywords

Advanced heart failure Pathophysiology Renal function Left ventricular assist devices Acute kidney injury Pulsatile Percutaneous Outcomes Improvement 

References

  1. 1.
    Triposkiadis F, Starling RC, Boudoulas H, Giamouzis G, Butler J. The cardiorenal syndrome in heart failure: cardiac? Renal? Syndrome? Heart Fail Rev. 2012;17(3):355–66.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Boudoulas KD, Triposkiadis F, Parissis J, Butler J, Boudoulas H. The cardio-renal interrelationship. Prog Cardiovasc Dis. 2017;59(6):636–48.PubMedCrossRefGoogle Scholar
  3. 3.
    Stewart GC, Givertz MM. Mechanical circulatory support for advanced heart failure: patients and technology in evolution. Circulation. 2012;125(10):1304–15.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Gustafsson F, Rogers JG. Left ventricular assist device therapy in advanced heart failure: patient selection and outcomes. Eur J Heart Fail. 2017;19(5):595–602.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Pinney SP, Anyanwu AC, Lala A, Teuteberg JJ, Uriel N, Mehra MR. Left ventricular assist devices for lifelong support. J Am Coll Cardiol. 2017;69(23):2845–61.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Miller LW, Guglin M. Patient selection for ventricular assist devices: a moving target. J Am Coll Cardiol. 2013;61(12):1209–21.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Park SJ, Milano CA, Tatooles AJ, Rogers JG, Adamson RM, Steidley DE, et al. Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy. Circ Heart Fail. 2012;5(2):241–8.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Starling RC, Naka Y, Boyle AJ, Gonzalez-Stawinski G, John R, Jorde U, et al. Results of the post-U.S. Food and Drug Administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol. 2011;57(19):1890–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Starling RC, Moazami N, Silvestry SC, Ewald G, Rogers JG, Milano CA, et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med. 2014;370(1):33–40.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Mehra MR, Naka Y, Uriel N, Goldstein DJ, Cleveland JC Jr, Colombo PC, et al. A fully magnetically levitated circulatory pump for advanced heart failure. N Engl J Med. 2017;376(5):440–50.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Mehra MR, Goldstein DJ, Uriel N, Cleveland JC Jr, Yuzefpolskaya M, Salerno C, et al. Two-year outcomes with a magnetically levitated cardiac pump in heart failure. New Eng J Med. 2018;379:896–7.CrossRefGoogle Scholar
  13. 13.
    Mullens W, Verbrugge FH, Nijst P, Tang WHW. Renal sodium avidity in heart failure: from pathophysiology to treatment strategies. Eur Heart J. 2017;38(24):1872–82.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    McAlister FA, Ezekowitz J, Tonelli M, Armstrong PW. Renal insufficiency and heart failure: prognostic and therapeutic implications from a prospective cohort study. Circulation. 2004;109(8):1004–9.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Damman K, Valente MA, Voors AA, O’Connor CM, van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2014;35(7):455–69.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Giamouzis G, Butler J, Triposkiadis F. Renal function in advanced heart failure. Congest Heart Fail. 2011;17(4):180–8.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Damman K, Navis G, Smilde TD, Voors AA, van der Bij W, van Veldhuisen DJ, et al. Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail. 2007;9(9):872–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J. 2015;36(23):1437–44.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Cottone S, Lorito MC, Riccobene R, Nardi E, Mule G, Buscemi S, et al. Oxidative stress, inflammation and cardiovascular disease in chronic renal failure. J Nephrol. 2008;21(2):175–9.PubMedPubMedCentralGoogle Scholar
  21. 21.
    MacFadyen RJ, Ng Kam Chuen MJ, Davis RC. Loop diuretic therapy in left ventricular systolic dysfunction: has familiarity bred contempt for a critical but potentially nephrotoxic cardio renal therapy? Eur J Heart Fail. 2010;12(7):649–52.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Lee DS, Gona P, Vasan RS, Larson MG, Benjamin EJ, Wang TJ, et al. Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the Framingham heart study of the national heart, lung, and blood institute. Circulation. 2009;119(24):3070–7.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Parikh NI, Hwang SJ, Larson MG, Meigs JB, Levy D, Fox CS. Cardiovascular disease risk factors in chronic kidney disease: overall burden and rates of treatment and control. Arch Intern Med. 2006;166(17):1884–91.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ljungman S, Laragh JH, Cody RJ. Role of the kidney in congestive heart failure. Relationship of cardiac index to kidney function. Drugs. 1990;39 Suppl 4:10–21; discussion 2–4.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Carubelli V, Lombardi C, Gorga E, Ravera A, Metra M, Mentz RJ. Cardiorenal interactions. Heart Fail Clin. 2016;12(3):335–47.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Damman K, Navis G, Voors AA, Asselbergs FW, Smilde TD, Cleland JG, et al. Worsening renal function and prognosis in heart failure: systematic review and meta-analysis. J Card Fail. 2007;13(8):599–608.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Smith GL, Lichtman JH, Bracken MB, Shlipak MG, Phillips CO, DiCapua P, et al. Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J Am Coll Cardiol. 2006;47(10):1987–96.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Metra M, Nodari S, Parrinello G, Bordonali T, Bugatti S, Danesi R, et al. Worsening renal function in patients hospitalised for acute heart failure: clinical implications and prognostic significance. Eur J Heart Fail. 2008;10(2):188–95.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364(9):797–805.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Metra M, Davison B, Bettari L, Sun H, Edwards C, Lazzarini V, et al. Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ Heart Fail. 2012;5(1):54–62.PubMedCrossRefGoogle Scholar
  31. 31.
    Khot UN, Mishra M, Yamani MH, Smedira NG, Paganini E, Yeager M, et al. Severe renal dysfunction complicating cardiogenic shock is not a contraindication to mechanical support as a bridge to cardiac transplantation. J Am Coll Cardiol. 2003;41(3):381–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Yoshioka D, Sakaguchi T, Saito S, Miyagawa S, Nishi H, Yoshikawa Y, et al. Predictor of early mortality for severe heart failure patients with left ventricular assist device implantation: significance of INTERMACS level and renal function. Circ J. 2012;76(7):1631–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Sandner SE, Zimpfer D, Zrunek P, Rajek A, Schima H, Dunkler D, et al. Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg. 2009;87(4):1072–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Butler J, Geisberg C, Howser R, Portner PM, Rogers JG, Deng MC, et al. Relationship between renal function and left ventricular assist device use. Ann Thorac Surg. 2006;81(5):1745–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Kirklin JK, Naftel DC, Kormos RL, Pagani FD, Myers SL, Stevenson LW, et al. Quantifying the effect of cardiorenal syndrome on mortality after left ventricular assist device implant. J Heart Lung Transplant. 2013;32(12):1205–13.PubMedCrossRefGoogle Scholar
  36. 36.
    Singh M, Shullo M, Kormos RL, Lockard K, Zomak R, Simon MA, et al. Impact of renal function before mechanical circulatory support on posttransplant renal outcomes. Ann Thorac Surg. 2011;91(5):1348–54.PubMedCrossRefGoogle Scholar
  37. 37.
    Roehm B, Vest AR, Weiner DE. Left ventricular assist devices, kidney disease, and dialysis. Am J Kidney Dis. 2018;71(2):257–66.PubMedCrossRefGoogle Scholar
  38. 38.
    Mao H, Katz N, Kim JC, Day S, Ronco C. Implantable left ventricular assist devices and the kidney. Blood Purif. 2014;37(1):57–66.PubMedCrossRefGoogle Scholar
  39. 39.
    Tromp TR, de Jonge N, Joles JA. Left ventricular assist devices: a kidney's perspective. Heart Fail Rev. 2015;20(4):519–32.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Hasin T, Topilsky Y, Schirger JA, Li Z, Zhao Y, Boilson BA, et al. Changes in renal function after implantation of continuous-flow left ventricular assist devices. J Am Coll Cardiol. 2012;59(1):26–36.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant. 2015;34(9):1123–30.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Gupta S, Woldendorp K, Muthiah K, Robson D, Prichard R, Macdonald PS, et al. Normalisation of haemodynamics in patients with end-stage heart failure with continuous-flow left ventricular assist device therapy. Heart Lung Circ. 2014;23(10):963–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Brisco MA, Kimmel SE, Coca SG, Putt ME, Jessup M, Tang WW, et al. Prevalence and prognostic importance of changes in renal function after mechanical circulatory support. Circ Heart Fail. 2014;7(1):68–75.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Russell SD, Rogers JG, Milano CA, Dyke DB, Pagani FD, Aranda JM, et al. Renal and hepatic function improve in advanced heart failure patients during continuous-flow support with the HeartMate II left ventricular assist device. Circulation. 2009;120(23):2352–7.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Deo SV, Sharma V, Altarabsheh SE, Hasin T, Dillon J, Shah IK, et al. Hepatic and renal function with successful long-term support on a continuous flow left ventricular assist device. Heart Lung Circ. 2014;23(3):229–33.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Yoshioka D, Takayama H, Colombo PC, Yuzefpolskaya M, Garan AR, Topkara VK, et al. Changes in end-organ function in patients with prolonged continuous-flow left ventricular assist device support. Ann Thorac Surg. 2017;103(3):717–24.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Raichlin E, Baibhav B, Lowes BD, Zolty R, Lyden ER, Vongooru HR, et al. Outcomes in patients with severe preexisting renal dysfunction after continuous-flow left ventricular assist device implantation. ASAIO J. 2016;62(3):261–7.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Makris K, Spanou L. Acute kidney injury: definition, pathophysiology and clinical phenotypes. Clin Biochem Rev. 2016;37(2):85–98.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Agostoni PG, Marenzi GC, Pepi M, Doria E, Salvioni A, Perego G, et al. Isolated ultrafiltration in moderate congestive heart failure. J Am Coll Cardiol. 1993;21(2):424–31.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Shirakabe A, Hata N, Kobayashi N, Okazaki H, Matsushita M, Shibata Y, et al. Worsening renal function definition is insufficient for evaluating acute renal failure in acute heart failure. ESC Heart Fail. 2018;5(3):322–31.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Coffin ST, Waguespack DR, Haglund NA, Maltais S, Dwyer JP, Keebler ME. Kidney dysfunction and left ventricular assist device support: a comprehensive perioperative review. Cardiorenal Med. 2015;5(1):48–60.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ross DW, Stevens GR, Wanchoo R, Majure DT, Jauhar S, Fernandez HA, et al. Left ventricular assist devices and the kidney. Clin J Am Soc Nephrol. 2018;13(2):348–55.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Sen A, Larson JS, Kashani KB, Libricz SL, Patel BM, Guru PK, et al. Mechanical circulatory assist devices: a primer for critical care and emergency physicians. Crit Care. 2016;20(1):153.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hanberg JS, Sury K, Wilson FP, Brisco MA, Ahmad T, Ter Maaten JM, et al. Reduced cardiac index is not the dominant driver of renal dysfunction in heart failure. J Am Coll Cardiol. 2016;67(19):2199–208.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Patel AM, Adeseun GA, Ahmed I, Mitter N, Rame JE, Rudnick MR. Renal failure in patients with left ventricular assist devices. Clin J Am Soc Nephrol. 2013;8(3):484–96.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Alba AC, Rao V, Ivanov J, Ross HJ, Delgado DH. Predictors of acute renal dysfunction after ventricular assist device placement. J Card Fail. 2009;15(10):874–81.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Kaltenmaier B, Pommer W, Kaufmann F, Hennig E, Molzahn M, Hetzer R. Outcome of patients with ventricular assist devices and acute renal failure requiring renal replacement therapy. ASAIO J. 2000;46(3):330–3.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Topkara VK, Dang NC, Barili F, Cheema FH, Martens TP, George I, et al. Predictors and outcomes of continuous veno-venous hemodialysis use after implantation of a left ventricular assist device. J Heart Lung Transplant. 2006;25(4):404–8.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Genovese EA, Dew MA, Teuteberg JJ, Simon MA, Bhama JK, Bermudez CA, et al. Early adverse events as predictors of 1-year mortality during mechanical circulatory support. J Heart Lung Transplant. 2010;29(9):981–8.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Demirozu ZT, Etheridge WB, Radovancevic R, Frazier OH. Results of HeartMate II left ventricular assist device implantation on renal function in patients requiring post-implant renal replacement therapy. J Heart Lung Transplant. 2011;30(2):182–7.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Welp H, Rukosujew A, Tjan TD, Hoffmeier A, Kosek V, Scheld HH, et al. Effect of pulsatile and non-pulsatile left ventricular assist devices on the renin-angiotensin system in patients with end-stage heart failure. Thorac Cardiovasc Surg. 2010;58(Suppl 2):S185–8.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kihara S, Litwak KN, Nichols L, Litwak P, Kameneva MV, Wu Z, et al. Smooth muscle cell hypertrophy of renal cortex arteries with chronic continuous flow left ventricular assist. Ann Thorac Surg. 2003;75(1):178–83; discussion 83.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Ootaki C, Yamashita M, Ootaki Y, Kamohara K, Weber S, Klatte RS, et al. Reduced pulsatility induces periarteritis in kidney: role of the local renin-angiotensin system. J Thorac Cardiovasc Surg. 2008;136(1):150–8.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Tank J, Heusser K, Malehsa D, Hegemann K, Haufe S, Brinkmann J, et al. Patients with continuous-flow left ventricular assist devices provide insight in human baroreflex physiology. Hypertension. 2012;60(3):849–55.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Sandner SE, Zimpfer D, Zrunek P, Dunkler D, Schima H, Rajek A, et al. Renal function after implantation of continuous versus pulsatile flow left ventricular assist devices. J Heart Lung Transplant. 2008;27(5):469–73.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Nadziakiewicz P, Szygula-Jurkiewicz B, Niklewski T, Pacholewicz J, Zakliczynski M, Borkowski J, et al. Effects of left ventricular assist device support on end-organ function in patients with heart failure: comparison of pulsatile- and continuous-flow support in a single-center experience. Transplant Proc. 2016;48(5):1775–80.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Kamdar F, Boyle A, Liao K, Colvin-adams M, Joyce L, John R. Effects of centrifugal, axial, and pulsatile left ventricular assist device support on end-organ function in heart failure patients. J Heart Lung Transplant. 2009;28(4):352–9.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Jacobs S, Droogne W, Waelbers V, Bossche KV, Bollen H, Geens J, et al. Evolution of renal function after partial and full mechanical support for chronic heart failure. Int J Artif Organs. 2014;37(5):364–70.PubMedCrossRefGoogle Scholar
  71. 71.
    Mao H, Giuliani A, Blanca-Martos L, Kim JC, Nayak A, Virzi G, et al. Effect of percutaneous ventricular assist devices on renal function. Blood Purif. 2013;35(1–3):119–26.PubMedCrossRefGoogle Scholar
  72. 72.
    Sloth E, Sprogoe P, Lindskov C, Horlyck A, Solvig J, Jakobsen C. Intra-aortic balloon pumping increases renal blood flow in patients with low left ventricular ejection fraction. Perfusion. 2008;23(4):223–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Vecchio S, Chechi T, Giuliani G, Lilli A, Consoli L, Spaziani G, et al. Use of Impella Recover 2.5 left ventricular assist device in patients with cardiogenic shock or undergoing high-risk percutaneous coronary intervention procedures: experience of a high-volume center. Minerva Cardioangiol. 2008;56(4):391–9.PubMedGoogle Scholar
  74. 74.
    La Torre MW, Centofanti P, Attisani M, Patane F, Rinaldi M. Posterior ventricular septal defect in presence of cardiogenic shock: early implantation of the impella recover LP 5.0 as a bridge to surgery. Tex Heart Inst J. 2011;38(1):42–9.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Gregoric ID, Loyalka P, Radovancevic R, Jovic Z, Frazier OH, Kar B. TandemHeart as a rescue therapy for patients with critical aortic valve stenosis. Ann Thorac Surg. 2009;88(6):1822–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Aragon J, Lee MS, Kar S, Makkar RR. Percutaneous left ventricular assist device: “TandemHeart” for high-risk coronary intervention. Catheter Cardiovasc Interv. 2005;65(3):346–52.PubMedCrossRefGoogle Scholar
  77. 77.
    Smith EJ, Reitan O, Keeble T, Dixon K, Rothman MT. A first-in-man study of the Reitan catheter pump for circulatory support in patients undergoing high-risk percutaneous coronary intervention. Catheter Cardiovasc Interv. 2009;73(7):859–65.PubMedCrossRefGoogle Scholar
  78. 78.
    Kilburn DJ, Shekar K, Fraser JF. The complex relationship of extracorporeal membrane oxygenation and acute kidney injury: causation or association? Biomed Res Int. 2016;2016:1094296.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Peek GJ, Mugford M, Tiruvoipati R, Wilson A, Allen E, Thalanany MM, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374(9698):1351–63.PubMedCrossRefGoogle Scholar
  80. 80.
    Doll N, Kiaii B, Borger M, Bucerius J, Kramer K, Schmitt DV, et al. Five-year results of 219 consecutive patients treated with extracorporeal membrane oxygenation for refractory postoperative cardiogenic shock. Ann Thorac Surg. 2004;77(1):151–7; discussion 7.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Smedira NG, Moazami N, Golding CM, McCarthy PM, Apperson-Hansen C, Blackstone EH, et al. Clinical experience with 202 adults receiving extracorporeal membrane oxygenation for cardiac failure: survival at five years. J Thorac Cardiovasc Surg. 2001;122(1):92–102.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Chung AC, Lan HY. Chemokines in renal injury. J Am Soc Nephrol. 2011;22(5):802–9.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andrew Xanthopoulos
    • 1
    • 2
  • Filippos Triposkiadis
    • 2
  • Randall C. Starling
    • 1
    Email author
  1. 1.Department of Cardiovascular MedicineHeart and Vascular Institute, Kaufman Center for Heart Failure, Cleveland ClinicClevelandUSA
  2. 2.Department of CardiologyUniversity General Hospital of LarissaLarissaGreece

Personalised recommendations