Advertisement

The Power of Research Networking Systems to Find Experts and Facilitate Collaboration

  • Griffin M. WeberEmail author
  • Leslie A. Yuan
Chapter

Abstract

With scientific teams in recent years becoming increasingly interdisciplinary and multi-institutional, searching for collaborators is more challenging than ever before. To address this problem, there has been a rapid emergence of “research networking systems” (RNSs) that help users identify investigators with particular areas of expertise, affiliations, interests, resources, or other characteristics. The goal of this chapter is to provide organizations with an overview of the capabilities of RNSs, the wide range of use cases, and techniques for successfully implementing RNSs and encouraging their adoption. It draws from our own personal experiences of building an open-source RNS and installing and enhancing it at several institutions. We touch upon the many obstacles we have faced along the way, ranging from specific issues related to privacy and data quality, to larger questions about the overall impact and return on investment from RNSs. We conclude with an overview of the current state of RNSs and where they will be heading in the future.

Keywords

Research networking Expert finder Team building Profiles RNS VIVO Social network Data visualization Website Adoption Governance 

Notes

Acknowledgments

This work was conducted with support from Harvard Catalyst | The Harvard Clinical and Translational Science Center and the UCSF Clinical and Translational Science Institute (National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health Awards UL1 TR001102 and UL1 TR001872) and financial contributions from Harvard University and its affiliated academic healthcare centers. Additional funding was provided by National Institutes of Health awards UL1TR000004, DP4GM096852, R01GM111563, and U01GM112623 and National Science Foundation awards #1238469 and #1360042. The content is solely the responsibility of the authors and does not necessarily represent the official views of Harvard Catalyst, Harvard University and its affiliated academic healthcare centers, UCSF, the National Institutes of Health, or the National Science Foundation.

References

  1. Altmetrics Wikipedia. 2016. https://en.wikipedia.org/wiki/Altmetrics. Accessed 1 Jul 2016.
  2. Berners-Lee T, Hendler J, Lassila O. The semantic web: a new form of web content that is meaningful to computers will unleash a revolution of new possibilities. Basingstoke: Scientific American; 2001.Google Scholar
  3. CTSAsearch. 2016. http://research.icts.uiowa.edu/polyglot. Accessed 1 Jul 2016.
  4. de Farber BG. Collaborative grant-seeking: a practical guide for librarians. Volume 24 of practical guides for librarians. Lanham, MA: Rowman & Littlefield; 2016.Google Scholar
  5. DiMicco J, Millen DR, Geyer W, Dugan C, Brownholtz B, Muller M. Motivations for social networking at work. In: Proceedings of the ACM Conference on Computer Supported Cooperative Work, San Diego, CA, USA. 2008. pp. 711–720.Google Scholar
  6. Direct2Experts. 2016. http://Direct2Experts.org. Accessed 1 Jul 2016.
  7. Dorit N, Benbasat I, Wand Y. Who knows what? Wall Street Journal/Sloan Management Review. 2009. http://online.wsj.com/news/articles/SB10001424052970203946904574302032097910314. Accessed 1 Jul 2016.
  8. Elsevier Pure. 2016. https://www.elsevier.com/solutions/pure. Accessed 1 Jul 2016.
  9. ExPORTER. 2016. https://exporter.nih.gov. Accessed 1 Jul 2016.
  10. Fazel-Zarandi M, Huang Y, Contractor N. Expert recommendation based on social drivers, social network analysis, and semantic data representation. In: Proceedings of the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems. 2011: pp. 41–48.Google Scholar
  11. Friedman PW, Winnick BL, Friedman CP, Mickelson PC. Development of a MeSH-based index of faculty research interests. Proc AMIA Symp. 2000:265–269.Google Scholar
  12. Gewin V. Collaboration: social networking seeks critical mass. Nature. 2010;468(7326):993–4.  https://doi.org/10.1038/nj7326-993a.CrossRefGoogle Scholar
  13. Google Docs. 2016. https://www.google.com/docs. Accessed 1 Jul 2016.
  14. Hafner K. For second opinion, consult a computer? New York, NY: New York Times; 2012. http://www.nytimes.com/2012/12/04/health/quest-to-eliminate-diagnostic-lapses.html?pagewanted=all. Accessed 1 Jul 2016.
  15. Harvard Catalyst. 2019. https://catalyst.harvard.edu. Accessed 8 Jul 2019.
  16. Harvard FD&D. 2016. http://faculty.harvard.edu. Accessed 1 Jul 2016.
  17. Harvard Provost. 2016. http://provost.harvard.edu. Accessed 1 Jul 2016.
  18. HFF. 2019. http://facultyfinder.harvard.edu. Accessed 8 Jul 2019.
  19. Jones BF, Wuchty S, Uzzi B. Multi-university research teams: shifting impact, geography, and stratification in science. Science. 2008;322(5905):1259–62.  https://doi.org/10.1126/science.1158357.. http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=18845711CrossRefPubMedGoogle Scholar
  20. Kahlon M, Yuan L, Daigre J, Meeks E, Nelson K, Piontkowski C, Reuter K, Sak R, Turner B, Weber GM, Chatterjee A. The use and significance of a research networking system. J Med Internet Res. 2014;16(2):e46.  https://doi.org/10.2196/jmir.3137.CrossRefPubMedPubMedCentralGoogle Scholar
  21. LOD Wikipedia. 2016. https://en.wikipedia.org/wiki/Linked_data. Accessed 1 Jul 2016.
  22. Lee K, Brownstein JS, Mills RG, Kohane IS. Does collocation inform the impact of collaboration? PLoS One. 2010;5(12):e14279.CrossRefGoogle Scholar
  23. MEDLINE. 2016. http://www.medline.com. Accessed 1 Jul 2016.
  24. MeSH. 2016. https://www.nlm.nih.gov/mesh. Accessed 1 Jul 2016.
  25. Mendeley. 2016. https://www.mendeley.com. Accessed 1 Jul 2016.
  26. Obeid JS, Johnson LM, Stallings S, Eichmann D. Research networking systems: the state of adoption at institutions aiming to augment translational research infrastructure. J Transl Med Epidemiol. 2014;2(2):1026.PubMedPubMedCentralGoogle Scholar
  27. ORCiD. 2016. http://orcid.org. Accessed 20 Dec 2016.
  28. ORNG. 2016. http://www.orng.info. Accessed 1 Jul 2016.
  29. OpenSocial Wikipedia. 2016. https://en.wikipedia.org/wiki/OpenSocial. Accessed 1 Jul 2016.
  30. Profiles RNS. 2016. http://profiles.catalyst.harvard.edu. Accessed 1 Jul 2016.
  31. RDF Wikipedia. 2016. https://en.wikipedia.org/wiki/Resource_Description_Framework. Accessed 1 Jul 2016.
  32. Reis SE, Berglund L, Bernard GR, Califf RM, Fitzgerald GA, Johnson PC, et al. Reengineering the national clinical and translational research enterprise: the strategic plan of the national clinical and translational science awards consortium. Acad Med. 2010;85:463–9.CrossRefGoogle Scholar
  33. ResearchGate. 2016. https://www.researchgate.net. Accessed 1 Jul 2016.
  34. Riemer K, Scifleet P. Enterprise social networking in knowledge-intensive work practices: a case study in a professional service firm. ACIS; Australasian Conference on Information Systems; December 3–5, 2012; Geelong, Australia. 2012, pp. 1–12.Google Scholar
  35. SPARQL Wikipedia. 2016. https://en.wikipedia.org/wiki/SPARQL. Accessed 1 Jul 2016.
  36. Schleyer T, Spallek H, Butler BS, Subramanian S, Weiss D, Poythress ML, Rattanathikun P, Mueller G. Facebook for scientists: requirements and services for optimizing how scientific collaborations are established. J Med Internet Res. 2008;10(3):e24.  https://doi.org/10.2196/jmir.1047.. http://www.jmir.org/2008/3/e24/CrossRefPubMedPubMedCentralGoogle Scholar
  37. SharePoint. 2016. https://products.office.com/en-us/sharepoint/collaboration. Accessed 1 Jul 2016.
  38. Slack. 2016. https://slack.com. Accessed 1 Jul 2016.
  39. SlideShare. 2016. http://www.slideshare.net. Accessed 1 Jul 2016.
  40. Symplectic. 2016. http://symplectic.co.uk/services/open-profile-services. Accessed 1 Jul 2016.
  41. Twitter. 2016. https://twitter.com. Accessed 1 Jul 2016.
  42. UCSF Profiles. 2016. http://profiles.ucsf.edu. Accessed 1 Jul 2016.
  43. UDN. 2016. https://undiagnosed.hms.harvard.edu. Accessed 1 Jul 2016.
  44. USPTO. 2016. http://www.uspto.gov. Accessed 1 Jul 2016.
  45. VIVOConference. 2016. http://vivoconference.org. Accessed 20 Dec 2016.
  46. VIVOWeb. 2016. http://vivoweb.org. Accessed 1 Jul 2016.
  47. Warner ET, Carapinha R, Weber GM, Hill EV, Reede JY. Considering context in academic medicine: differences in demographic and professional characteristics and in research productivity and advancement metrics across seven clinical departments. Acad Med. 2015;90(8):1077–83.  https://doi.org/10.1097/ACM.0000000000000717.CrossRefPubMedGoogle Scholar
  48. Warner ET, Carapinha R, Weber GM, Hill EV, Reede JY. Faculty promotion and attrition: the importance of coauthor network reach at an academic medical center. J Gen Intern Med. 2016;31(1):60–7.  https://doi.org/10.1007/s11606-015-3463-7.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Weber GM, Barnett W, Conlon M, Eichmann D, Kibbe W, Falk-Krzesinski H, Halaas M, Johnson L, Meeks E, Mitchell D, Schleyer T, Stallings S, Warden M, Kahlon M. Direct2Experts collaboration Direct2Experts: a pilot national network to demonstrate interoperability among research-networking platforms. J Am Med Inform Assoc. 2011;18(Suppl 1):i157–60.  https://doi.org/10.1136/amiajnl-2011-000200.. http://jamia.bmj.com/cgi/pmidlookup?view=long&pmid=22037890CrossRefPubMedPubMedCentralGoogle Scholar
  50. Woolf SH. The meaning of translational research and why it matters. JAMA. 2008;299:211–3.PubMedGoogle Scholar
  51. Wuchty S, Jones BF, Uzzi B. The increasing dominance of teams in production of knowledge. Science. 2007;316(5827):1036–9.CrossRefGoogle Scholar
  52. YouTube. 2016. https://www.youtube.com. Accessed 1 Jul 2016.
  53. Zerhouni EA. Translational and clinical science-time for a new vision. N Engl J Med. 2005;353:1621–3.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA
  2. 2.University of California San FranciscoSan FranciscoUSA

Personalised recommendations