Advertisement

Putting to Test a Model of Self-evaluation of the Learning Method in an e-Learning Environment

  • Jonathan KaplanEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 993)

Abstract

This paper describes the process and results of a study that put to test a model of self-evaluation of the learning processes which had emerged from a previous study. As in the previous study, this study examined self- and co-regulation strategies, in particular learners’ assessment strategies that learners perceived to have used during a university course within an e-learning environment. In the previous study [13], collective evaluation of the targeted learning content—a co-regulation strategy—, and to a lesser extent, individual environmental control, both predicted individual self-evaluation of the study method. Using the same research method, the study presented in this paper aimed at examining learners’ self-evaluation of their study method to test if a similar explicative model emerged. Furthermore, the present research studied two student groups, learning within the same course but with separate instructors. Studying two groups enabled to compare perceived regulation of learning strategies used. Subjects were postgraduate students in Educational Sciences studying on a digital campus in a French university during the academic year 2017–18. Data was collected using the ERICA scale [15]. The study found that the same explicative model applied, though the explicative power of the model was weaker. It also revealed that the two groups of learners did not differ significantly. These findings are discussed followed by suggestions for the design of e-learning environments.

Keywords

Self-regulation Co-regulation Learning strategies Assessment Self-evaluation 

References

  1. 1.
    Bandura, A.: Social Learning Theory. General Learning Press, New York (1971)Google Scholar
  2. 2.
    Bandura, A.: Social cognitive theory of personality. In: Pervin, L.A., John, O.P. (eds.) Handbook of Personality - Theory and Research, vol. 738, p. xiii. Guilford Press, New York (1999)Google Scholar
  3. 3.
    Efklides, A.: Metacognition: defining its facets and levels of functioning in relation to self-regulation and co-regulation. Eur. Psychol. 13(4), 277–287 (2008)CrossRefGoogle Scholar
  4. 4.
    Greene, J.A., Azevedo, R.: A macro-level analysis of SRL processes and their relations to the acquisition of a sophisticated mental model of a complex system. Contemp. Educ. Psychol. 34(1), 18–29 (2009)CrossRefGoogle Scholar
  5. 5.
    Grömping, U.: Variable importance in regression models. Wiley Interdisc. Rev.: Comput. Stat. 7(2), 137–152 (2015).  https://doi.org/10.1002/wics.1346MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hammond, M.: What is an affordance and can it help us understand the use of ICT in education? Educ. Inf. Technol. 15(3), 205–217 (2010).  https://doi.org/10.1007/s10639-009-9106-zCrossRefGoogle Scholar
  7. 7.
    Järvelä, S., Malmberg, J., Koivuniemi, M.: Recognizing socially shared regulation by using the temporal sequences of online chat and logs in CSCL. Learn. Instr. 42, 1–11 (2016)CrossRefGoogle Scholar
  8. 8.
    Johnson, D.W., Johnson, R.T., Smith, K.A.: Cooperative learning: increasing college faculty instructional productivity. ASHE-ERIC Higher Education Reports, 2 edn., vol. 20. George Washington University, Graduate School of Education and Human Development (1991)Google Scholar
  9. 9.
    Kaplan, J.: L’autodirection dans les apprentissages coopératifs - Le cas des Cercles d’Étude [Self-Direction in Cooperative Learning - The Case of Study Circles]. Ph.D. thesis, Paris 10 University, Nanterre (2009)Google Scholar
  10. 10.
    Kaplan, J.: L’autodirection dans les apprentissages coopératifs: Le cas des Cercles d’Étude. Éditions Universitaires Européennes, Sarrebruck (2010)Google Scholar
  11. 11.
    Kaplan, J.: Co-regulation in Technology enhanced learning environments. In: Uden, L., Sinclair, J., Tao, Y.-H., Liberona, D. (eds.) LTEC 2014. CCIS, vol. 446, pp. 72–81. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10671-7_7CrossRefGoogle Scholar
  12. 12.
    Kaplan, J.: Learning strategies and interpersonal relationships of students learning cooperatively online. In: Uden, L., Liberona, D., Feldmann, B. (eds.) LTEC 2016. CCIS, vol. 620, pp. 103–111. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42147-6_9CrossRefGoogle Scholar
  13. 13.
    Kaplan, J.: Coévaluation entre pairs apprenants comme échafaudage de la régulation du processus de l’apprentissage. Symposium: apprentissage autorégulé et régulation des apprentissages: le rôle de l’évaluation, Les rencontres internationales du Réseau de recherche en éducation et en formation (REF 2017). CNAM, Paris, 4 July 2017Google Scholar
  14. 14.
    Kaplan, J.: Les stratégies d’autorégulation collective des apprenants adultes en e-formation. In: Jézégou, A. (ed.) Traité de la e-Formation des adultes, chap. 11, pp. 344–376. De Boeck Supérieur (2019)Google Scholar
  15. 15.
    Kaplan, J., de Montalembert, M., Laurent, P., Fenouillet, F.: ERICA - an instrument to measure individual and collective regulation of learning [ERICA - Un outil pour mesurer la régulation individuelle et collective de l’apprentissage]. Eur. Rev. Appl. Psychol. - Revue Européenne de Psychologie Appliquée 67(2), 79–89 (2017).  https://doi.org/10.1016/j.erap.2017.01.001CrossRefGoogle Scholar
  16. 16.
    Lajoie, S.: Metacognition, self regulation, and self-regulated learning: a rose by any other name? Educ. Psychol. Rev. 20(4), 469–475 (2008)CrossRefGoogle Scholar
  17. 17.
    Menard, S.W.: Applied Logistic Regression Analysis. Sage Publications, Thousand Oaks (1995)Google Scholar
  18. 18.
    Peña, E.A., Slate, E.H.: Global validation of linear model assumptions. J. Am. Stat. Assoc. 101(473), 341–354 (2006).  https://doi.org/10.1198/016214505000000637MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2017). https://www.R-project.org/
  20. 20.
    Saab, N.: Team regulation, regulation of social activities or co-regulation: different labels for effective regulation of learning in CSCL. Metacogn. Learn. 7(1), 1–6 (2012)CrossRefGoogle Scholar
  21. 21.
    Salonen, P., Vauras, M., Efklides, A.: Social interaction - what can it tell us about metacognition and coregulation in learning? Eur. Psychol. 10(3), 199–208 (2005)CrossRefGoogle Scholar
  22. 22.
    Volet, S., Summers, M., Thurman, J.: High-level co-regulation in collaborative learning: how does it emerge and how is it sustained? Learn. Instr. 19(2), 128–143 (2009)CrossRefGoogle Scholar
  23. 23.
    Volet, S., Vauras, M., Salonen, P.: Self- and social regulation in learning contexts: an integrative perspective. Educ. Psychol. 44(4), 215–226 (2009)CrossRefGoogle Scholar
  24. 24.
    Zimmerman, B.J., Pons, M.M.: Development of a structured interview for assessing student use of self-regulated learning strategies. Am. Educ. Res. J. 23(4), 614–628 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut des Sciences et Pratiques d’Éducation et de Formation, Laboratoire Éducation, Cultures and Politiques (EA 4571)Université Lumière Lyon 2LyonFrance
  2. 2.Laboratoire Cognitions Humaine et ArtificielleUniversité Paris Nanterre (EA 4004)NanterreFrance

Personalised recommendations