Visual Odometry for Indoor Mobile Robot by Recognizing Local Manhattan Structures

  • Zhixing Hou
  • Yaqing Ding
  • Ying Wang
  • Hang Yang
  • Hui KongEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11365)


In this paper, we propose a novel 3-DOF visual odometry method to estimate the location and pose (yaw) of a mobile robot when the robot is navigating indoors. Particularly, we mainly aim at dealing with the corridor-like scenarios where the RGB-D camera mounted on the robot can capture apparent planar structures such as floor or walls. The novelties of our method lie in two-folds. First, to fully exploit the planar structures for odometry estimation, we propose a fast plane segmentation scheme based on efficiently extracted inverse-depth induced histograms. This training-free scheme can extract dominant planar structures by only exploiting the depth image of the RGB-D camera. Second, we regard the global indoor scene as a composition of some local Manhattan-like structures. At any specific location, we recognize at least one local Manhattan coordinate frame based on the detected planar structures. Pose estimation is realized based on the alignment of the camera coordinate frame to one dominant local Manhattan coordinate frame. Knowing pose information, the location estimation is carried out by a combination of a one-point RANSAC method and the ICP algorithm depending on the number of point matches available. We evaluate our work extensively on real-world data, the experimental result shows the promising performance in term of accuracy and robustness.


Visual odometry Manhattan structure RGB-D camera Plane segmentation 



This work was supported in part by the Jiangsu Province Natural Science Foundation under Grant BK20151491 and in part by the Natural Science Foundation of China under Grant 61672287.


  1. 1.
    Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–607. International Society for Optics and Photonics (1992)Google Scholar
  2. 2.
    Concha, A., Civera, J.: DPPTAM: dense piecewise planar tracking and mapping from a monocular sequence. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5686–5693. IEEE (2015)Google Scholar
  3. 3.
    Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)CrossRefGoogle Scholar
  4. 4.
    Flint, A., Mei, C., Reid, I., Murray, D.: Growing semantically meaningful models for visual SLAM. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 467–474. IEEE (2010)Google Scholar
  5. 5.
    Ghanem, B., Thabet, A., Carlos Niebles, J., Caba Heilbron, F.: Robust Manhattan frame estimation from a single RGB-D image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3772–3780 (2015)Google Scholar
  6. 6.
    Gomez-Ojeda, R., Zuñiga-Noël, D., Moreno, F.A., Scaramuzza, D., Gonzalez-Jimenez, J.: PL-SLAM: a stereo SLAM system through the combination of points and line segments. arXiv preprint arXiv:1705.09479 (2017)
  7. 7.
    Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2D LIDAR SLAM. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1271–1278. IEEE (2016)Google Scholar
  8. 8.
    Hsiao, M., Westman, E., Zhang, G., Kaess, M.: Keyframe-based dense planar SLAM. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5110–5117. IEEE (2017)Google Scholar
  9. 9.
    Kim, P., Coltin, B., Kim, H.J.: Low-drift visual odometry in structured environments by decoupling rotational and translational motion. In: 2018 IEEE international conference on Robotics and automation (ICRA)Google Scholar
  10. 10.
    Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality 2007, ISMAR 2007, pp. 225–234. IEEE (2007)Google Scholar
  11. 11.
    Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection in stereovision on non-fat road geometry through “v-disparity” representation. In: Proceedings of the IEEE Intelligent Vehicles Symposium 2002, pp. 646–651. IEEE (2002)Google Scholar
  12. 12.
    Le, P.H., Košecka, J.: Dense piecewise planar RGB-D SLAM for indoor environments. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4944–4949. IEEE (2017)Google Scholar
  13. 13.
    Lemaire, T., Lacroix, S.: Monocular-vision based SLAM using line segments. In: 2007 IEEE International Conference on Robotics and Automation, pp. 2791–2796. IEEE (2007)Google Scholar
  14. 14.
    Li, S.J., Ren, B., Liu, Y., Cheng, M.M., Frost, D., Prisacariu, V.A.: Direct line guidance odometry. In: 2018 IEEE international conference on Robotics and automation (ICRA) (2018)Google Scholar
  15. 15.
    Lu, Y., Song, D.: Robust RGB-D odometry using point and line features. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3934–3942 (2015)Google Scholar
  16. 16.
    Lu, Y., Song, D.: Robustness to lighting variations: an RGB-D indoor visual odometry using line segments. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 688–694. IEEE (2015)Google Scholar
  17. 17.
    Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., et al.: FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: pp. 593–598. AAAI/IAAI (2002)Google Scholar
  18. 18.
    Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)CrossRefGoogle Scholar
  19. 19.
    Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)CrossRefGoogle Scholar
  20. 20.
    Pumarola, A., Vakhitov, A., Agudo, A., Sanfeliu, A., Moreno-Noguer, F.: PL-SLAM: real-time monocular visual SLAM with points and lines. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4503–4508. IEEE (2017)Google Scholar
  21. 21.
    Raposo, C., Lourenço, M., Antunes, M., Barreto, J.P.: Plane-based Odometry using an RGB-D camera. In: BMVC (2013)Google Scholar
  22. 22.
    Smith, P., Reid, I.D., Davison, A.J.: Real-time monocular SLAM with straight lines (2006)Google Scholar
  23. 23.
    Sola, J., Vidal-Calleja, T., Devy, M.: Undelayed initialization of line segments in monocular SLAM. In: IEEE/RSJ International Conference on Intelligent Robots and Systems 2009, IROS 2009, pp. 1553–1558. IEEE (2009)Google Scholar
  24. 24.
    Thabet, A.K., Lahoud, J., Asmar, D., Ghanem, B.: 3D aware correction and completion of depth maps in piecewise planar scenes. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9004, pp. 226–241. Springer, Cham (2015). Scholar
  25. 25.
    Yang, S., Scherer, S.: Direct monocular odometry using points and lines. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3871–3877. IEEE (2017)Google Scholar
  26. 26.
    Yang, S., Song, Y., Kaess, M., Scherer, S.: Pop-up SLAM: semantic monocular plane SLAM for low-texture environments. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1222–1229. IEEE (2016)Google Scholar
  27. 27.
    Zhou, H., Zou, D., Pei, L., Ying, R., Liu, P., Yu, W.: StructSLAM: visual SLAM with building structure lines. IEEE Trans. Veh. Technol. 64(4), 1364–1375 (2015)CrossRefGoogle Scholar
  28. 28.
    Zuo, X., Xie, X., Liu, Y., Huang, G.: Robust visual SLAM with point and line features. arXiv preprint arXiv:1711.08654 (2017)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zhixing Hou
    • 1
  • Yaqing Ding
    • 1
  • Ying Wang
    • 1
  • Hang Yang
    • 1
  • Hui Kong
    • 1
    Email author
  1. 1.School of Computer Science and EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations