Advertisement

Topological Mapper for 3D Volumetric Images

  • Daniel H. Chitwood
  • Mitchell EithunEmail author
  • Elizabeth Munch
  • Tim Ophelders
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11564)

Abstract

Mapper is a topological construction similar to a Reeb graph, and is used to summarize the shape of a dataset as a (generalized) graph. Formally, mapper can be constructed for any connected space and algorithms have been developed to compute mapper for point clouds and 2D images. In this paper, we extend mapper to 3D volumetric images. We use our algorithm to compute mapper for scans of barley generated using computed tomography. We demonstrate the flexibility of the construction by highlighting different aspects of the morphology through different choices of starting parameters. Applying mapper to this type of data provides an integrated means of visualization, segmentation and clustering, and can thus be used to study the topology of any 3D object.

Keywords

Topological mapper Image processing Computed tomography Topological data analysis 

Notes

Acknowledgments

The authors thank Jacob Landis and Daniel Koenig for providing the barley spike and X-ray Computed Tomography data. The data set is available on the figshare repository [5].

References

  1. 1.
  2. 2.
  3. 3.
    Carlsson, G.: Topological pattern recognition for point cloud data. Acta Numer. 23, 289–368 (2014).  https://doi.org/10.1017/S0962492914000051, http://journals.cambridge.org/article_S0962492914000051, surveyMathSciNetCrossRefGoogle Scholar
  4. 4.
    Carrière, M., Michel, B., Oudot, S.: Statistical analysis and parameter selection for mapper (2017). arXiv:1706.00204
  5. 5.
    Chitwood, D.H., Eithun, M., Koenig, D., Landis, J., Munch, E., Ophelders, T.: CT scan of barley (Hordeum vulgare L.) (2019).  https://doi.org/10.6084/m9.figshare.7590833
  6. 6.
    Dey, T., Mémoli, F., Wang, Y.: Multiscale mapper: topological summarization via codomain covers. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 997–1013. Society for Industrial and Applied Mathematics, December 2015.  https://doi.org/10.1137/1.9781611974331.ch71
  7. 7.
    Doraiswamy, H., Natarajan, V.: Computing Reeb graphs as a union of contour trees. IEEE Trans. Vis. Comput. Graph. 2, 249–262 (2013)CrossRefGoogle Scholar
  8. 8.
    Eithun, M.: eithun/3D-mapper: topological mapper for 3D volumetric images (2019).  https://doi.org/10.5281/zenodo.2602059
  9. 9.
    Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  10. 10.
    Ghrist, R.: Elementary Applied Topology. CreateSpace Independent Publishing Platform, London (2014)Google Scholar
  11. 11.
    Hajij, M., Assiri, B., Rosen, P.: Distributed mapper, December 2017. arXiv:1712.03660 [cs, stat]
  12. 12.
    Hajij, M., Rosen, P.: An efficient data retrieval parallel Reeb graph algorithm, October 2018. arXiv:1810.08310 [cs]
  13. 13.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  14. 14.
    Janusch, I.: Reeb graph based image representation for phenotyping of plants. Master’s thesis, Vienna University of Technology (2014)Google Scholar
  15. 15.
    Munch, E.: A user’s guide to topological data analysis. J. Learn. Anal. 4(2) (2017).  https://doi.org/10.18608/jla.2017.42.6MathSciNetCrossRefGoogle Scholar
  16. 16.
    Munch, E., Wang, B.: Convergence between categorical representations of Reeb space and Mapper. In: Fekete, S., Lubiw, A. (eds.) 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), vol. 51, pp. 53:1–53:16. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2016).  https://doi.org/10.4230/LIPIcs.SoCG.2016.53
  17. 17.
    Najman, L., Cousty, J.: A graph-based mathematical morphology reader. Pattern Recogn. Lett. 47, 3–17 (2014).  https://doi.org/10.1016/j.patrec.2014.05.007CrossRefGoogle Scholar
  18. 18.
    Nicolau, M., Levine, A.J., Carlsson, G.: Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc. Natl. Acad. Sci., 201102826 (2011).  https://doi.org/10.1073/pnas.1102826108, https://www.pnas.org/content/early/2011/04/07/1102826108CrossRefGoogle Scholar
  19. 19.
    Nielson, J.L., et al.: Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury. Nat. Commun. 6 (2015).  https://doi.org/10.1038/ncomms9581, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634208/
  20. 20.
    Oliphant, T.E.: Guide to numpy (2006)Google Scholar
  21. 21.
    Piekenbrock, M., Doran, D., Kram, R.: Efficient multi-scale simplicial complex generation for mapper (2018). https://peekxc.github.io/resources/indexed_mapper.pdf
  22. 22.
    Reeb, G.: Sur les points singuliers d’une forme de pfaff complèment intégrable ou d’une fonction numérique. C. R. Acad. Séances 222, 847–849 (1946)zbMATHGoogle Scholar
  23. 23.
    Reid, D.A.: Morphology and anatomy of the barley plant. Barley (Barley) 26, 73–101 (1985)Google Scholar
  24. 24.
    Robles, A., Hajij, M., Rosen, P.: The shape of an image - a study of mapper on images. In: Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. VISAPP, vol. 4, pp. 339–347. INSTICC, SciTePress (2018).  https://doi.org/10.5220/0006574803390347
  25. 25.
    Shi, Y., Li, J., Toga, A.W.: Persistent Reeb graph matching for fast brain search. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 306–313. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10581-9_38CrossRefGoogle Scholar
  26. 26.
    de Silva, V., Munch, E., Patel, A.: Categorified Reeb graphs. Discrete Comput. Geom. 55(4), 854–906 (2016).  https://doi.org/10.1007/s00454-016-9763-9MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Singh, G., Memoli, F., Carlsson, G.: Topological methods for the analysis of high dimensional data sets and 3D object recognition. In: Botsch, M., Pajarola, R., Chen, B., Zwicker, M. (eds.) Eurographics Symposium on Point-Based Graphics. The Eurographics Association (2007).  https://doi.org/10.2312/SPBG/SPBG07/091-100
  28. 28.
    van der Walt, S., et al.: Scikit-image: image processing in Python. PeerJ 2, e453 (2014).  https://doi.org/10.7717/peerj.453CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniel H. Chitwood
    • 1
  • Mitchell Eithun
    • 1
    Email author
  • Elizabeth Munch
    • 1
  • Tim Ophelders
    • 1
  1. 1.Michigan State UniversityEast LansingUSA

Personalised recommendations