Advertisement

Matrix Morphology with Extremum Principle

  • Martin WelkEmail author
  • Michael Breuß
  • Vivek Sridhar
Conference paper
  • 251 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11564)

Abstract

The fundamental operations of mathematical morphology are dilation and erosion. In previous works, these operations have been generalised in a discrete setting to work with fields of symmetric matrices, and also corresponding methods based on partial differential equations have been constructed. However, the existing methods for dilation and erosion in the matrix-valued setting are not overall satisfying. By construction they may violate a discrete extremum principle, which means that results may leave the convex hull of the matrices that participate in the computation. This may not be desirable from the theoretical point of view, as the corresponding property is fundamental for discrete and continuous-scale formulations of dilation and erosion in the scalar setting. Moreover, if such a principle could be established in the matrix-valued framework, this would help to make computed solutions more interpretable.

In our paper we address this issue. We show how to construct a method for matrix-valued morphological dilation and erosion that satisfies a discrete extremum principle. We validate the construction by showing experimental results on synthetic data as well as colour images, as the latter can be cast as fields of symmetric matrices.

Keywords

Dilation Erosion Matrix valued images Extremum principle 

References

  1. 1.
    Arehart, A.B., Vincent, L., Kimia, B.B.: Mathematical morphology: the Hamilton-Jacobi connection. In: Proceedings Fourth International Conference on Computer Vision, pp. 215–219. IEEE Computer Society Press, Berlin, May 1993Google Scholar
  2. 2.
    Boroujerdi, A.S., Breuß, M., Burgeth, B., Kleefeld, A.: PDE-based color morphology using matrix fields. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 461–473. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18461-6_37CrossRefGoogle Scholar
  3. 3.
    Breuß, M., Hoeltgen, L., Kleefeld, A.: Matrix-valued levelings for colour images. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds.) ISMM 2017. LNCS, vol. 10225, pp. 296–308. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57240-6_24CrossRefGoogle Scholar
  4. 4.
    Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphology. In: Proceedings IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, San Francisco, CA, pp. 125–128, Mar 1992Google Scholar
  5. 5.
    Bruhn, A., Weickert, J., Kohlberger, T., Schnörr, C.: A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. Int. J. Comput. Vis. 70(3), 257–277 (2006)CrossRefGoogle Scholar
  6. 6.
    Burgeth, B., Kleefeld, A.: Morphology for color images via loewner order for matrix fields. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 243–254. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38294-9_21CrossRefzbMATHGoogle Scholar
  7. 7.
    Burgeth, B., Kleefeld, A.: An approach to color-morphology based on Einstein addition and Loewner order. Pattern Recogn. Lett. 47, 29–39 (2014)CrossRefGoogle Scholar
  8. 8.
    Burgeth, B., Kleefeld, A.: Order based morphology for color images via matrix fields. In: Westin, C.-F., Vilanova, A., Burgeth, B. (eds.) Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization, pp. 75–95. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54301-2_4CrossRefGoogle Scholar
  9. 9.
    Burgeth, B., Pizarro, L., Breuß, M., Weickert, J.: Adaptive continuous-scale morphology for matrix fields. Int. J. Comput. Vis. 92(2), 146–161 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Burgeth, B., Welk, M., Feddern, C., Weickert, J.: Morphological operations on matrix-valued images. In: Pajdla, T., Matas, J. (eds.) ECCV 2004, Part IV. LNCS, vol. 3024, pp. 155–167. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24673-2_13CrossRefGoogle Scholar
  11. 11.
    Burgeth, B., Welk, M., Feddern, C., Weickert, J.: Mathematical morphology on tensor data using the Loewner ordering. In: Weickert, J., Hagen, H. (eds.) Visualization and Processing of Tensor Fields, pp. 357–368. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-31272-2_22CrossRefGoogle Scholar
  12. 12.
    Forst, W., Hoffmann, D.: Optimization – Theory and Practice. Springer, New York (2010).  https://doi.org/10.1007/978-0-387-78977-4CrossRefzbMATHGoogle Scholar
  13. 13.
    Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proceedings ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, pp. 281–305, June 1987Google Scholar
  14. 14.
    Kleefeld, A., Breuß, M., Welk, M., Burgeth, B.: Adaptive filters for color images: median filtering and its extensions. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) CCIW 2015. LNCS, vol. 9016, pp. 149–158. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15979-9_15CrossRefGoogle Scholar
  15. 15.
    Laidlaw, D., Weickert, J. (eds.): Visualization and Processing of Tensor Fields: Advances and Perspectives. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-88378-4CrossRefzbMATHGoogle Scholar
  16. 16.
    Löwner, K.: Über monotone Matrixfunktionen. Mathematische Zeitschrift 38, 177–216 (1934)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., Di Chiro, G.: Diffusion tensor MR imaging of the human brain. Radiology 201(3), 637–648 (1996)CrossRefGoogle Scholar
  18. 18.
    Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29, 867–884 (1992)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sapiro, G., Kimmel, R., Shaked, D., Kimia, B.B., Bruckstein, A.M.: Implementing continuous-scale morphology via curve evolution. Pattern Recogn. 26, 1363–1372 (1993)CrossRefGoogle Scholar
  20. 20.
    Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)Google Scholar
  21. 21.
    Weickert, J., Hagen, H. (eds.): Visualization and Processing of Tensor Fields. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-31272-2CrossRefzbMATHGoogle Scholar
  22. 22.
    Welk, M., Kleefeld, A., Breuß, M.: Quantile filtering of colour images via symmetric matrices. Math. Morphol. Theor. Appl. 1, 1–40 (2016)Google Scholar
  23. 23.
    Welk, M., Weickert, J., Becker, F., Schnörr, C., Feddern, C., Burgeth, B.: Median and related local filters for tensor-valued images. Sign. Process. 87, 291–308 (2007)CrossRefGoogle Scholar
  24. 24.
    Westin, C.F., Vilanova, A., Burgeth, B. (eds.): Visualization and Processing of Tensor Fields and Higher Order Descriptors for Multi-Valued Data. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54301-2CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Biomedical Image AnalysisPrivate University of Health Sciences, Medical Informatics and TechnologyHall/TyrolAustria
  2. 2.Brandenburg University of Technology Cottbus–SenftenbergCottbusGermany

Personalised recommendations