Advertisement

Introduction

  • Adam SmithEmail author
Chapter
  • 86 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Nature is extremely complex! Not necessarily because of the fundamental laws that govern it, but due to the unfathomable number of degrees of freedom interacting with each other. Fortunately, many natural phenomena display a remarkable level of universality, that is to say, they are independent of their microscopic details.

References

  1. 1.
    Feynman RP (1972) Statistical mechanics: a set of lectures. Westview PressGoogle Scholar
  2. 2.
    Lifshitz EM, Pitaevskii LP (1980a) Statistical physics part I, 3rd edn. Pergamon PressGoogle Scholar
  3. 3.
    Lifshitz EM, Pitaevskii LP (1980b) Statistical physics part 2: theory of the condensed state, 2nd edn. Pergamon PressGoogle Scholar
  4. 4.
    Blundell SJ, Blundell KM (2010) Concepts in thermal physics, 2nd edn. Oxford University Press, OxfordzbMATHCrossRefGoogle Scholar
  5. 5.
    Efetov K (1997) Supersymmetry in disorder and chaos. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511573057
  6. 6.
    Coleman P (2015) Introduction to many-body physics. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9781139020916
  7. 7.
    Altland A, Simons B (2010) Condensed matter field theory, 2nd edn. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511789984
  8. 8.
    Landau LD (1937) On the theory of phase transitions. Zh Eks Teor Fiz 7:19–32Google Scholar
  9. 9.
    Cardy J (1996) Scaling and renormalization in statistical physics. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9781316036440
  10. 10.
    Lifshitz EM, Pitaevskii LP (1981) Physical kinetics. Pergamon PressGoogle Scholar
  11. 11.
    Keldysh LV (1965) Diagram technique for non-equilibrium processes. JETP 20:1018. http://www.jetp.ac.ru/cgi-bin/e/index/e/20/4/p1018?a=list
  12. 12.
    Kamenev A (2011) Field theory of non-equilibrium systems. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9781139003667
  13. 13.
    Berry M (1989) Quantum chaology, not quantum chaos. Phys Scr 40: 335–336.  https://doi.org/10.1088/0031-8949/40/3/013ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Deutsch JM (1991) Quantum statistical mechanics in a closed system. Phys Rev A 43: 2046–2049.  https://doi.org/10.1103/PhysRevA.43.2046ADSCrossRefGoogle Scholar
  15. 15.
    Srednicki M (1994) Chaos and quantum thermalization. Phys Rev E 50: 888–901.  https://doi.org/10.1103/PhysRevE.50.888ADSCrossRefGoogle Scholar
  16. 16.
    Deutsch JM (2018) Eigenstate Thermalization Hypothesis. http://arxiv.org/abs/1805.01616arXiv:1805.01616ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Nandkishore R, Huse DA (2015) Many-body localization and thermalization in quantum statistical mechanics. Ann Rev Condens Matter Phys 6:15–38.  https://doi.org/10.1146/annurev-conmatphys-031214-014726ADSCrossRefGoogle Scholar
  18. 18.
    Abanin DA, Papić Z (2017) Recent progress in many-body localization. Ann Phys 529:1700169.  https://doi.org/10.1002/andp.201700169ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Montvay I, Münster G (1994) Quantum fields on a lattice. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511470783
  20. 20.
    Fradkin E (2013) Field theories of condensed matter physics. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9781139015509
  21. 21.
    Wen X-G (2007) Quantum field theory of many-body systems. Oxford University Press, Oxford.  https://doi.org/10.1093/acprof:oso/9780199227259.001.0001
  22. 22.
    Essler FHL, Fagotti M (2016) Quench dynamics and relaxation in isolated integrable quantum spin chains. J Stat Mech Theory Exp 2016:064002.  https://doi.org/10.1088/1742-5468/2016/06/064002MathSciNetCrossRefGoogle Scholar
  23. 23.
    Vasseur R, Moore JE (2016) Nonequilibrium quantum dynamics and transport: from integrability to many-body localization. J Stat Mech Theory Exp 2016:064010.  https://doi.org/10.1088/1742-5468/2016/06/064010MathSciNetCrossRefGoogle Scholar
  24. 24.
    Gogolin AO, Nersesyan AA, Tsvelik AM (1998) Bosonization and strongly correlated systems. Cambridge University Press, CambridgeGoogle Scholar
  25. 25.
    Kitaev AY (2006) Anyons in an exactly soled model and beyond. Ann Phys (N Y) 321:2–111.  https://doi.org/10.1016/j.aop.2005.10.005ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Baskaran G, Mandal S, Shankar R (2007) Exact results for spin dynamics and fractionalization in the Kitaev model. Phys Rev Lett 98:247201.  https://doi.org/10.1103/PhysRevLett.98.247201
  27. 27.
    Knolle J, Kovrizhin DL, Chalker JT Moessner R (2014) Dynamics of a two-dimensional quantum spin liquid: signatures of emergent Majorana fermions and fluxes. Phys Rev Lett 112:207203. http://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.112.207203
  28. 28.
    Banerjee A, Yan J, Knolle J, Bridges CA, Stone MB, Lumsden MD, Mandrus DG, Tennant DA, Moessner R, Nagler SE (2017) Neutron scattering in the proximate quantum spin liquid \(\alpha \)-RuCl 3. Science 356:1055–1059.  https://doi.org/10.1126/science.aah6015ADSCrossRefGoogle Scholar
  29. 29.
    Smith A, Knolle J, Kovrizhin DL, Chalker JT, Moessner R (2015) Neutron scattering signatures of the 3D hyperhoneycomb Kitaev quantum spin liquid. Phys Rev B 92:180408.  https://doi.org/10.1103/PhysRevB.92.180408
  30. 30.
    Smith A, Knolle J, Korizhin DL, Chalker JT, Moessner R (2016) Majorana spectroscopy of three-dimensional Kitaev spin liquids. Phys Rev B 93:235146.  https://doi.org/10.1103/PhysRevB.93.235146
  31. 31.
    Lieb EH, Robinson DW (1972) The finite group velocity of quantum spin systems. Commun Math Phys 28:251–257.  https://doi.org/10.1007/BF01645779ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Bravyi S, Hastings MB, Verstraete F (2006) Lieb-Robinson bounds and the generation of correlations and topological quantum order. Phys Rev Lett 97:1–4.  https://doi.org/10.1103/PhysRevLett.97.050401
  33. 33.
    Srednicki M (2012) KITP talk: overview of eigenstate thermalization hypothesis. http://online.kitp.ucsb.edu/online/qdynamics12/srednicki/
  34. 34.
    Khatami E, Pupillo G, Srednicki M, Rigol M (2013) Fluctuation-dissipation theorem in an isolated system of quantum dipolar bosons after a Quench. Phys. Rev Lett 111:050403.  https://doi.org/10.1103/PhysRevLett.111.050403
  35. 35.
    D’Alessio L, Kafri Y, Polkonikov A, Rigol M (2016) From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv Phys 65:239–362.  https://doi.org/10.1080/00018732.2016.1198134ADSCrossRefGoogle Scholar
  36. 36.
    Wilde MM (2017) Quantum information theory, 2nd edn. Cambridge University Press, Cambridge.  https://doi.org/10.1017/9781316809976
  37. 37.
    Eisert J (2001) Entanglement in quantum information theory. Ph.D. thesis. https://arxi.org/pdf/quant-ph/06102531.pdf
  38. 38.
    Li H, Haldane FDM (2008) Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in Non-Abelian fractional quantum hall effect states. Phys Rev Lett 101:010504 .  https://doi.org/10.1103/PhysRevLett.101.010504
  39. 39.
    Geraedts SD, Nandkishore R, Regnault N (2016) Many-body localization and thermalization: insights from the entanglement spectrum.  https://doi.org/10.1103/PhysRevB.93.174202 Phys Rev B 93:174202
  40. 40.
    Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109:1492–1505.  https://doi.org/10.1103/PhysRev.109.1492ADSCrossRefGoogle Scholar
  41. 41.
    Abrahams E ed (2010) 50 years of Anderson localization. World ScientificGoogle Scholar
  42. 42.
    Altshuler BL, Arono AG, Larkin AI, Khmelnitskil DE, Konstantinou BP (1981) Anomalous magnetoresistance in semiconductors. JETP 54:411. http://www.jetp.ac.ru/cgi-bin/dn/e_054_02_0411.pdf
  43. 43.
    Aronov AG, Sharvin Y (1987) Magnetic flux effects in disordered conductors. Rev Mod Phys 59:755–779.  https://doi.org/10.1103/RevModPhys.59.755ADSCrossRefGoogle Scholar
  44. 44.
    Bergmann G (1984) Weak localization in thin films. Phys Rep 107:1–58.  https://doi.org/10.1016/0370-1573(84)90103-0ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Tong D (2016) Lecture notes on: the quantum hall effect. http://www.damtp.cam.ac.uk/user/tong/qhe.html
  46. 46.
    Basko DM, Aleiner IL, Altshuler BL (2006) Metalinsulator transition in a weakly interacting many-electron system with localized single-particle states. Ann Phys (N Y) 321:1126–1205.  https://doi.org/10.1016/j.aop.2005.11.014ADSzbMATHCrossRefGoogle Scholar
  47. 47.
    Žnidarič M, Prosen T, Prelovšek P (2008) Many-body localization in the Heisenberg XXZ magnet in a random field. Phys Rev B 77:064426.  https://doi.org/10.1103/PhysRevB.77.064426
  48. 48.
    Bardarson JH, Pollmann F, Moore JE (2012) Unbounded growth of entanglement in models of many-body localization. Phys Rev Lett 109:017202.  https://doi.org/10.1103/PhysRevLett.109.017202
  49. 49.
    Kramer B, MacKinnon A (1993) Localization: theory and experiment. Rep Prog Phys 56:1469–1564.  https://doi.org/10.1088/0034-4885/56/12/001ADSCrossRefGoogle Scholar
  50. 50.
    Landau LD, Lifshitz EM (1977) Quantum mechanics: non-relativistic theory, 3rd edn. Pergamon PressGoogle Scholar
  51. 51.
    Abrahams E, Anderson PW, Licciardello DC, Ramakrishnan TV (1979) Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys Rev Lett 42:673–676.  https://doi.org/10.1103/PhysRevLett.42.673ADSCrossRefGoogle Scholar
  52. 52.
    Imbrie JZ (2016) On many-body localization for quantum spin chains. J Stat Phys 163:998–1048.  https://doi.org/10.1007/s10955-016-1508-xADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Schreiber M, Hodgman SS, Bordia P, Luschen HP, Fischer MH, Vosk R, Altman E, Schneider U, Bloch I (2015) Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349:842–845.  https://doi.org/10.1126/science.aaa7432ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Eisert J, Cramer M, Plenio MB (2010) Colloquium: area laws for the entanglement entropy. Rev Mod Phys 82:277–306  https://doi.org/10.1103/RevModPhys.82.277ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Serbyn M, Papić Z, Abanin DA Local conservation laws and the structure of the many-body localized states. Phys Rev Lett 111:127201.  https://doi.org/10.1103/PhysRevLett.111.127201
  56. 56.
    Huse DA, Nandkishore R, Oganesyan V (2014) Phenomenology of fully many-body-localized systems. Phys Rev B 90:174202.  https://doi.org/10.1103/PhysRevB.90.174202
  57. 57.
    Kagan Y, Maksimov LA (1984) Localization in a system of interacting particles diffusing in a regular crystal. Sov Phys JETP 60:201. 0038-5646/84/070201-10Google Scholar
  58. 58.
    Schiulaz M, Müller M (2014) Ideal quantum glass transitions: many-body localization without quenched disorder. In: AIP Conference Proceedings, vol. 1610, pp. 11–23.  https://doi.org/10.1063/1.4893505
  59. 59.
    Schiulaz M, Silva A, Müller M (2015) Dynamics in many-body localized quantum systems without disorder. Phys Rev B 91:184202.  https://doi.org/10.1103/PhysRevB.91.184202
  60. 60.
    Yao NY, Laumann CR, Cirac JI, Lukin MD, Moore JE (2016a) Quasi-many-body localization in translation-invariant systems. Phys Rev Lett 117:240601.  https://doi.org/10.1103/PhysRevLett.117.240601
  61. 61.
    Mikheev AV, Maidano A, Mikhin NP (1983) Localization and quantum diffusion of He\(^3\) atoms stimulated by phonons in He\(^4\) crystals. Solid State Commun 48:361ADSCrossRefGoogle Scholar
  62. 62.
    Papić Z, Stoudenmire EM, Abanin DA (2015) Many-body localization in disorder-free systems: The importance of finite-size constraints. Ann Phys (N Y) 362:714–725.  https://doi.org/10.1016/j.aop.2015.08.024ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    Garrahan JP (2018) Aspects of non-equilibrium in classical and quantum systems: slow relaxation and glasses, dynamical large deviations, quantum non-ergodicity, and open quantum dynamics. Phys A Stat Mech Appl 504:130–154.  https://doi.org/10.1016/j.physa.2017.12.149ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    van Horssen M, Levi E, Garrahan JP (2015) Dynamics of many-body localization in a translation-invariant quantum glass model. Phys Rev B 92:100305.  https://doi.org/10.1103/PhysRevB.92.100305
  65. 65.
    Hickey JM, Genway S, Garrahan JP (2016) Signatures of many-body localisation in a system without disorder and the relation to a glass transition. J Stat Mech Theory Exp 2016:054047CrossRefGoogle Scholar
  66. 66.
    Garrahan JP, Newman MEJ (2000) Glassiness and constrained dynamics of a short-range nondisordered spin model. Phys Rev E 62:7670–7678.  https://doi.org/10.1103/PhysRevE.62.7670ADSCrossRefGoogle Scholar
  67. 67.
    Castelnovo C, Chamon C (2012) Topological quantum glassiness. Philos Mag 92:1–3.  https://doi.org/10.1080/14786435.2011.609152ADSCrossRefGoogle Scholar
  68. 68.
    Chamon C, Goerbig MO, Moessner R, Cugliandolo LF (2017) Topological aspects of condensed matter physics. In: Chamon C, Goerbig MO, Moessner R, Cugliandolo LF (eds) Oxford University Press, Oxford. https://global.oup.com/academic/product/topological-aspects-of-condensed-matter-physics-9780198785781?cc=gb&lang=en&
  69. 69.
    Peskin ME, Schroeder DV (1995) An introduction to quantum field theory. Westview PressGoogle Scholar
  70. 70.
    Wiese U-J (2013) Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories. Ann Phys 525:777–796.  https://doi.org/10.1002/andp.201300104ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Zohar E, Cirac JI, Reznik B (2016) Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep Prog Phys 79:014401.  https://doi.org/10.1088/0034-4885/79/1/014401ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    Kühn S, Cirac JI, Bañuls M-C (2014) Quantum simulation of the Schwinger model: a study of feasibility. Phys Rev A 90:042305.  https://doi.org/10.1103/PhysRevA.90.042305
  73. 73.
    Kogut J, Susskind L (1975) Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev D 11:395–408.  https://doi.org/10.1103/PhysRevD.11.395ADSCrossRefGoogle Scholar
  74. 74.
    Kitaev AY (2003) Fault-tolerant quantum computation by anyons. Ann Phys (N Y) 303:2–30.  https://doi.org/10.1016/S0003-4916(02)00018-0ADSMathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Feynman RP, Leighton RB, Sands M (2010) The Feynman lectures on physics. Volume II: Mainly electromagnetism and matter, New Millen edn. Basic Books, New YorkGoogle Scholar
  76. 76.
    Wegner FJ (1971) Duality in generalized ising models and phase transitions without local order parameters. J Math Phys 12:2259–2272.  https://doi.org/10.1063/1.1665530ADSMathSciNetCrossRefGoogle Scholar
  77. 77.
    Kogut JB (1979) An introduction to lattice gauge theory and spin systems. Rev Mod Phys 51:659–713.  https://doi.org/10.1103/RevModPhys.51.659ADSMathSciNetCrossRefGoogle Scholar
  78. 78.
    Anderson MH, Ensher JR, Matthews MR, Wieman CE, Cornell EA (1995) Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269:198–201.  https://doi.org/10.1126/science.269.5221.198ADSCrossRefGoogle Scholar
  79. 79.
    Bakr WS, Gillen JI, Peng A, Fölling S, Greiner M (2009) A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462:74–77.  https://doi.org/10.1038/nature08482ADSCrossRefGoogle Scholar
  80. 80.
    Choi J-Y, Hild S, Zeiher J, Schauss P, Rubio-Abadal A, Yefsah T, Khemani V, Huse DA, Bloch I, Gross C (2016) Exploring the many-body localization transition in two dimensions. Science 352:1547–1552.  https://doi.org/10.1126/science.aaf8834ADSMathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21:467–488.  https://doi.org/10.1007/BF02650179ADSMathSciNetCrossRefGoogle Scholar
  82. 82.
    Aspuru-Guzik A, Walther P (2012) Photonic quantum simulators. Nat Phys 8:285–291.  https://doi.org/10.1038/nphys2253ADSCrossRefGoogle Scholar
  83. 83.
    Houck AA, Türeci HE, Koch J (2012) On-chip quantum simulation with superconducting circuits. Nat Phys 8:292–299.  https://doi.org/10.1038/nphys2251ADSCrossRefGoogle Scholar
  84. 84.
    Weimer H, Müller M, Büchler HP, Lesanovsky I (2011) Digital quantum simulation with Rydberg atoms. Quantum Inf Process 10:885–906.  https://doi.org/10.1007/s11128-011-0303-5ADSCrossRefGoogle Scholar
  85. 85.
    Kim H, Park Y, Kim K, Sim H-S, Ahn J (2018) Detailed balance of thermalization dynamics in Rydberg-atom quantum simulators. Phys Rev Lett 120:180502.  https://doi.org/10.1103/PhysRevLett.120.180502
  86. 86.
    Cirac JI, Zoller P (1995) Quantum computations with cold trapped ions. Phys Rev Lett 74:4091–4094. http://arxi.org/abs/0305129 arXi:0305129 [quant-ph].  https://doi.org/10.1103/PhysRevLett.74.4091ADSCrossRefGoogle Scholar
  87. 87.
    Martinez EA, Muschik CA, Schindler P, Nigg D, Erhard A, Heyl M, Hauke P, Dalmonte M, Monz T, Zoller P, Blatt R (2016) Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534:516–519.  https://doi.org/10.1038/nature18318ADSCrossRefGoogle Scholar
  88. 88.
    Bloch I, Dalibard J, Zwerger W (2008) Many-body physics with ultracold gases. Rev Mod Phys 80:885–964.  https://doi.org/10.1103/RevModPhys.80.885ADSCrossRefGoogle Scholar
  89. 89.
    Aubry S, André G (1980) Analyticity breaking and anderson localization in incommensurate lattices. Ann Isreal Phys Soc 3:18MathSciNetzbMATHGoogle Scholar
  90. 90.
    Bordia P, Lüschen H, Scherg S, Gopalakrishnan S, Knap M, Schneider U, Bloch I (2017) Probing slow relaxation and many-body localization in two-dimensional quasiperiodic systems. Phys Rev X 7:041047.  https://doi.org/10.1103/PhysRevX.7.041047

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fakultät für PhysikTechnische Universität MünchenGarchingGermany

Personalised recommendations