• Adam SmithEmail author
Part of the Springer Theses book series (Springer Theses)


Nature is extremely complex! Not necessarily because of the fundamental laws that govern it, but due to the unfathomable number of degrees of freedom interacting with each other. Fortunately, many natural phenomena display a remarkable level of universality, that is to say, they are independent of their microscopic details.


  1. 1.
    Feynman RP (1972) Statistical mechanics: a set of lectures. Westview PressGoogle Scholar
  2. 2.
    Lifshitz EM, Pitaevskii LP (1980a) Statistical physics part I, 3rd edn. Pergamon PressGoogle Scholar
  3. 3.
    Lifshitz EM, Pitaevskii LP (1980b) Statistical physics part 2: theory of the condensed state, 2nd edn. Pergamon PressGoogle Scholar
  4. 4.
    Blundell SJ, Blundell KM (2010) Concepts in thermal physics, 2nd edn. Oxford University Press, OxfordzbMATHCrossRefGoogle Scholar
  5. 5.
    Efetov K (1997) Supersymmetry in disorder and chaos. Cambridge University Press, Cambridge.
  6. 6.
    Coleman P (2015) Introduction to many-body physics. Cambridge University Press, Cambridge.
  7. 7.
    Altland A, Simons B (2010) Condensed matter field theory, 2nd edn. Cambridge University Press, Cambridge.
  8. 8.
    Landau LD (1937) On the theory of phase transitions. Zh Eks Teor Fiz 7:19–32Google Scholar
  9. 9.
    Cardy J (1996) Scaling and renormalization in statistical physics. Cambridge University Press, Cambridge.
  10. 10.
    Lifshitz EM, Pitaevskii LP (1981) Physical kinetics. Pergamon PressGoogle Scholar
  11. 11.
    Keldysh LV (1965) Diagram technique for non-equilibrium processes. JETP 20:1018.
  12. 12.
    Kamenev A (2011) Field theory of non-equilibrium systems. Cambridge University Press, Cambridge.
  13. 13.
    Berry M (1989) Quantum chaology, not quantum chaos. Phys Scr 40: 335–336. Scholar
  14. 14.
    Deutsch JM (1991) Quantum statistical mechanics in a closed system. Phys Rev A 43: 2046–2049. Scholar
  15. 15.
    Srednicki M (1994) Chaos and quantum thermalization. Phys Rev E 50: 888–901. Scholar
  16. 16.
    Deutsch JM (2018) Eigenstate Thermalization Hypothesis. Scholar
  17. 17.
    Nandkishore R, Huse DA (2015) Many-body localization and thermalization in quantum statistical mechanics. Ann Rev Condens Matter Phys 6:15–38. Scholar
  18. 18.
    Abanin DA, Papić Z (2017) Recent progress in many-body localization. Ann Phys 529:1700169. Scholar
  19. 19.
    Montvay I, Münster G (1994) Quantum fields on a lattice. Cambridge University Press, Cambridge.
  20. 20.
    Fradkin E (2013) Field theories of condensed matter physics. Cambridge University Press, Cambridge.
  21. 21.
    Wen X-G (2007) Quantum field theory of many-body systems. Oxford University Press, Oxford.
  22. 22.
    Essler FHL, Fagotti M (2016) Quench dynamics and relaxation in isolated integrable quantum spin chains. J Stat Mech Theory Exp 2016:064002. Scholar
  23. 23.
    Vasseur R, Moore JE (2016) Nonequilibrium quantum dynamics and transport: from integrability to many-body localization. J Stat Mech Theory Exp 2016:064010. Scholar
  24. 24.
    Gogolin AO, Nersesyan AA, Tsvelik AM (1998) Bosonization and strongly correlated systems. Cambridge University Press, CambridgeGoogle Scholar
  25. 25.
    Kitaev AY (2006) Anyons in an exactly soled model and beyond. Ann Phys (N Y) 321:2–111. Scholar
  26. 26.
    Baskaran G, Mandal S, Shankar R (2007) Exact results for spin dynamics and fractionalization in the Kitaev model. Phys Rev Lett 98:247201.
  27. 27.
    Knolle J, Kovrizhin DL, Chalker JT Moessner R (2014) Dynamics of a two-dimensional quantum spin liquid: signatures of emergent Majorana fermions and fluxes. Phys Rev Lett 112:207203.
  28. 28.
    Banerjee A, Yan J, Knolle J, Bridges CA, Stone MB, Lumsden MD, Mandrus DG, Tennant DA, Moessner R, Nagler SE (2017) Neutron scattering in the proximate quantum spin liquid \(\alpha \)-RuCl 3. Science 356:1055–1059. Scholar
  29. 29.
    Smith A, Knolle J, Kovrizhin DL, Chalker JT, Moessner R (2015) Neutron scattering signatures of the 3D hyperhoneycomb Kitaev quantum spin liquid. Phys Rev B 92:180408.
  30. 30.
    Smith A, Knolle J, Korizhin DL, Chalker JT, Moessner R (2016) Majorana spectroscopy of three-dimensional Kitaev spin liquids. Phys Rev B 93:235146.
  31. 31.
    Lieb EH, Robinson DW (1972) The finite group velocity of quantum spin systems. Commun Math Phys 28:251–257. Scholar
  32. 32.
    Bravyi S, Hastings MB, Verstraete F (2006) Lieb-Robinson bounds and the generation of correlations and topological quantum order. Phys Rev Lett 97:1–4.
  33. 33.
    Srednicki M (2012) KITP talk: overview of eigenstate thermalization hypothesis.
  34. 34.
    Khatami E, Pupillo G, Srednicki M, Rigol M (2013) Fluctuation-dissipation theorem in an isolated system of quantum dipolar bosons after a Quench. Phys. Rev Lett 111:050403.
  35. 35.
    D’Alessio L, Kafri Y, Polkonikov A, Rigol M (2016) From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv Phys 65:239–362. Scholar
  36. 36.
    Wilde MM (2017) Quantum information theory, 2nd edn. Cambridge University Press, Cambridge.
  37. 37.
    Eisert J (2001) Entanglement in quantum information theory. Ph.D. thesis.
  38. 38.
    Li H, Haldane FDM (2008) Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in Non-Abelian fractional quantum hall effect states. Phys Rev Lett 101:010504 .
  39. 39.
    Geraedts SD, Nandkishore R, Regnault N (2016) Many-body localization and thermalization: insights from the entanglement spectrum. Phys Rev B 93:174202
  40. 40.
    Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109:1492–1505. Scholar
  41. 41.
    Abrahams E ed (2010) 50 years of Anderson localization. World ScientificGoogle Scholar
  42. 42.
    Altshuler BL, Arono AG, Larkin AI, Khmelnitskil DE, Konstantinou BP (1981) Anomalous magnetoresistance in semiconductors. JETP 54:411.
  43. 43.
    Aronov AG, Sharvin Y (1987) Magnetic flux effects in disordered conductors. Rev Mod Phys 59:755–779. Scholar
  44. 44.
    Bergmann G (1984) Weak localization in thin films. Phys Rep 107:1–58. Scholar
  45. 45.
    Tong D (2016) Lecture notes on: the quantum hall effect.
  46. 46.
    Basko DM, Aleiner IL, Altshuler BL (2006) Metalinsulator transition in a weakly interacting many-electron system with localized single-particle states. Ann Phys (N Y) 321:1126–1205. Scholar
  47. 47.
    Žnidarič M, Prosen T, Prelovšek P (2008) Many-body localization in the Heisenberg XXZ magnet in a random field. Phys Rev B 77:064426.
  48. 48.
    Bardarson JH, Pollmann F, Moore JE (2012) Unbounded growth of entanglement in models of many-body localization. Phys Rev Lett 109:017202.
  49. 49.
    Kramer B, MacKinnon A (1993) Localization: theory and experiment. Rep Prog Phys 56:1469–1564. Scholar
  50. 50.
    Landau LD, Lifshitz EM (1977) Quantum mechanics: non-relativistic theory, 3rd edn. Pergamon PressGoogle Scholar
  51. 51.
    Abrahams E, Anderson PW, Licciardello DC, Ramakrishnan TV (1979) Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys Rev Lett 42:673–676. Scholar
  52. 52.
    Imbrie JZ (2016) On many-body localization for quantum spin chains. J Stat Phys 163:998–1048. Scholar
  53. 53.
    Schreiber M, Hodgman SS, Bordia P, Luschen HP, Fischer MH, Vosk R, Altman E, Schneider U, Bloch I (2015) Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349:842–845. Scholar
  54. 54.
    Eisert J, Cramer M, Plenio MB (2010) Colloquium: area laws for the entanglement entropy. Rev Mod Phys 82:277–306 Scholar
  55. 55.
    Serbyn M, Papić Z, Abanin DA Local conservation laws and the structure of the many-body localized states. Phys Rev Lett 111:127201.
  56. 56.
    Huse DA, Nandkishore R, Oganesyan V (2014) Phenomenology of fully many-body-localized systems. Phys Rev B 90:174202.
  57. 57.
    Kagan Y, Maksimov LA (1984) Localization in a system of interacting particles diffusing in a regular crystal. Sov Phys JETP 60:201. 0038-5646/84/070201-10Google Scholar
  58. 58.
    Schiulaz M, Müller M (2014) Ideal quantum glass transitions: many-body localization without quenched disorder. In: AIP Conference Proceedings, vol. 1610, pp. 11–23.
  59. 59.
    Schiulaz M, Silva A, Müller M (2015) Dynamics in many-body localized quantum systems without disorder. Phys Rev B 91:184202.
  60. 60.
    Yao NY, Laumann CR, Cirac JI, Lukin MD, Moore JE (2016a) Quasi-many-body localization in translation-invariant systems. Phys Rev Lett 117:240601.
  61. 61.
    Mikheev AV, Maidano A, Mikhin NP (1983) Localization and quantum diffusion of He\(^3\) atoms stimulated by phonons in He\(^4\) crystals. Solid State Commun 48:361ADSCrossRefGoogle Scholar
  62. 62.
    Papić Z, Stoudenmire EM, Abanin DA (2015) Many-body localization in disorder-free systems: The importance of finite-size constraints. Ann Phys (N Y) 362:714–725. Scholar
  63. 63.
    Garrahan JP (2018) Aspects of non-equilibrium in classical and quantum systems: slow relaxation and glasses, dynamical large deviations, quantum non-ergodicity, and open quantum dynamics. Phys A Stat Mech Appl 504:130–154. Scholar
  64. 64.
    van Horssen M, Levi E, Garrahan JP (2015) Dynamics of many-body localization in a translation-invariant quantum glass model. Phys Rev B 92:100305.
  65. 65.
    Hickey JM, Genway S, Garrahan JP (2016) Signatures of many-body localisation in a system without disorder and the relation to a glass transition. J Stat Mech Theory Exp 2016:054047CrossRefGoogle Scholar
  66. 66.
    Garrahan JP, Newman MEJ (2000) Glassiness and constrained dynamics of a short-range nondisordered spin model. Phys Rev E 62:7670–7678. Scholar
  67. 67.
    Castelnovo C, Chamon C (2012) Topological quantum glassiness. Philos Mag 92:1–3. Scholar
  68. 68.
    Chamon C, Goerbig MO, Moessner R, Cugliandolo LF (2017) Topological aspects of condensed matter physics. In: Chamon C, Goerbig MO, Moessner R, Cugliandolo LF (eds) Oxford University Press, Oxford.
  69. 69.
    Peskin ME, Schroeder DV (1995) An introduction to quantum field theory. Westview PressGoogle Scholar
  70. 70.
    Wiese U-J (2013) Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories. Ann Phys 525:777–796. Scholar
  71. 71.
    Zohar E, Cirac JI, Reznik B (2016) Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep Prog Phys 79:014401. Scholar
  72. 72.
    Kühn S, Cirac JI, Bañuls M-C (2014) Quantum simulation of the Schwinger model: a study of feasibility. Phys Rev A 90:042305.
  73. 73.
    Kogut J, Susskind L (1975) Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev D 11:395–408. Scholar
  74. 74.
    Kitaev AY (2003) Fault-tolerant quantum computation by anyons. Ann Phys (N Y) 303:2–30. Scholar
  75. 75.
    Feynman RP, Leighton RB, Sands M (2010) The Feynman lectures on physics. Volume II: Mainly electromagnetism and matter, New Millen edn. Basic Books, New YorkGoogle Scholar
  76. 76.
    Wegner FJ (1971) Duality in generalized ising models and phase transitions without local order parameters. J Math Phys 12:2259–2272. Scholar
  77. 77.
    Kogut JB (1979) An introduction to lattice gauge theory and spin systems. Rev Mod Phys 51:659–713. Scholar
  78. 78.
    Anderson MH, Ensher JR, Matthews MR, Wieman CE, Cornell EA (1995) Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269:198–201. Scholar
  79. 79.
    Bakr WS, Gillen JI, Peng A, Fölling S, Greiner M (2009) A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462:74–77. Scholar
  80. 80.
    Choi J-Y, Hild S, Zeiher J, Schauss P, Rubio-Abadal A, Yefsah T, Khemani V, Huse DA, Bloch I, Gross C (2016) Exploring the many-body localization transition in two dimensions. Science 352:1547–1552. Scholar
  81. 81.
    Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21:467–488. Scholar
  82. 82.
    Aspuru-Guzik A, Walther P (2012) Photonic quantum simulators. Nat Phys 8:285–291. Scholar
  83. 83.
    Houck AA, Türeci HE, Koch J (2012) On-chip quantum simulation with superconducting circuits. Nat Phys 8:292–299. Scholar
  84. 84.
    Weimer H, Müller M, Büchler HP, Lesanovsky I (2011) Digital quantum simulation with Rydberg atoms. Quantum Inf Process 10:885–906. Scholar
  85. 85.
    Kim H, Park Y, Kim K, Sim H-S, Ahn J (2018) Detailed balance of thermalization dynamics in Rydberg-atom quantum simulators. Phys Rev Lett 120:180502.
  86. 86.
    Cirac JI, Zoller P (1995) Quantum computations with cold trapped ions. Phys Rev Lett 74:4091–4094. arXi:0305129 [quant-ph]. Scholar
  87. 87.
    Martinez EA, Muschik CA, Schindler P, Nigg D, Erhard A, Heyl M, Hauke P, Dalmonte M, Monz T, Zoller P, Blatt R (2016) Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534:516–519. Scholar
  88. 88.
    Bloch I, Dalibard J, Zwerger W (2008) Many-body physics with ultracold gases. Rev Mod Phys 80:885–964. Scholar
  89. 89.
    Aubry S, André G (1980) Analyticity breaking and anderson localization in incommensurate lattices. Ann Isreal Phys Soc 3:18MathSciNetzbMATHGoogle Scholar
  90. 90.
    Bordia P, Lüschen H, Scherg S, Gopalakrishnan S, Knap M, Schneider U, Bloch I (2017) Probing slow relaxation and many-body localization in two-dimensional quasiperiodic systems. Phys Rev X 7:041047.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fakultät für PhysikTechnische Universität MünchenGarchingGermany

Personalised recommendations