Posterior Cervical Fusion Surgery: Occiput to C2

  • R. Tushar Jha
  • Faheem A. Sandhu


Occipitocervical fusion (OCF) is used to treat several conditions that may cause instability and neurologic compromise at the craniovertebral junction. Craniocervical instability can present with a range of signs and symptoms of myelopathy, lower cranial nerve deficits, and even headaches. There are several radiographic methods that can be utilized to assess for instability at the craniocervical junction. OCF can be accomplished using a variety of instrumentation techniques and bone grafts. The anatomy of the craniocervical junction, radiographic assessment, fusion techniques, postoperative management, and complications avoidance are reviewed in this chapter.


Occipitocervical fusion Craniocervical instability Craniovertebral junction Atlanto-occipital dissociation 


  1. 1.
    Ando K, Imagama S, Ito Z, Kobayashi K, Yagi H, Shinjo R, Hida T, Ito K, Ishikawa Y, Ishiguro N. Minimum 5-year follow-up results for occipitocervical fusion using the screw-rod system in craniocervical instability. Clin Spine Surg. 2017;30(5):628–32.CrossRefGoogle Scholar
  2. 2.
    Bambakidis NC, Feiz-Erfan I, Horn EM, Gonzalez LF, Baek S, Yüksel KZ, et al. Biomechanical comparison of occipitoatlantal screw fixation techniques. J Neurosurg Spine. 2008;8(2):143–52.CrossRefGoogle Scholar
  3. 3.
    Dewan MC, Godil SS, Saniya S, Mendenhall SK, Devin CJ, McGirt MJ. C2 nerve root transection during C1 lateral mass screw fixation: does it affect functionality and quality of life? Neurosurgery. 2014;74(5):475–80.CrossRefGoogle Scholar
  4. 4.
    Felbaum D, Spitz S, Sandhu FA. Correction of clivoaxial angle deformity in the setting of suboccipital craniectomy: technical note. J Neurosurg Spine. 2015;23(1):8–15.CrossRefGoogle Scholar
  5. 5.
    Foerster O. Pain pathways and the surgical treatment of pain syndromes. Berlin: Urban and Schwarzenberg; 1927.Google Scholar
  6. 6.
    Harms J, Melcher RP. Posterior C1-C2 fusion with polyaxial screw and rod fixation. Spine. 2001;26(22):2467–71.CrossRefGoogle Scholar
  7. 7.
    He B, Yan L, Xu Z, Chang Z, Hao D. The causes and treatment strategies for the postoperative complications of occipitocervical fusion: a 316 cases retrospective analysis. Eur Spine J. 2014;23(8):1720–4.CrossRefGoogle Scholar
  8. 8.
    Huang DG, Hao DJ, He BR, Wu QN, Liu TJ, Wang XD, et al. Posterior atlantoaxial fixation: a review of all techniques. Spine J. 2015;15(10):2271–81.CrossRefGoogle Scholar
  9. 9.
    Hwang SW, Gressot LV, Chern JJ, Relyea K, Jea A. Complications of occipital screw placement for occipitocervical fusion in children. J Neurosurg Pediatr. 2012;9(6):586–93.CrossRefGoogle Scholar
  10. 10.
    Iyer RR, Tuite GF, Meoded A, Carey CC, Rodriguez LF. A modified technique for occipitocervical fusion using compressed iliac crest allograft results in a high rate of fusion in the pediatric population. World Neurosurg. 2017;107:342–50.CrossRefGoogle Scholar
  11. 11.
    Hankinson TC, Anderson RCE. Craniovertebral junction abnormalities in down syndrome. Neurosurgery. 2010;66(3 Suppl):32–8.CrossRefGoogle Scholar
  12. 12.
    Lall R, Patel NJ, Resnick DK. A review of complications associated with craniocervical fusion surgery. Neurosurgery. 2010;67(5):1396–403.CrossRefGoogle Scholar
  13. 13.
    Lapsiwala SB, Anderson PA, Oza A, Resnick DK, et al. Biomechanical comparison of four C1 to 2 rigid fixative techniques: anterior transarticular, posterior transarticular, C1 to C2 pedicle, and C1 to C2 intralaminar screws. Neurosurgery. 2006;58(3):516–20.CrossRefGoogle Scholar
  14. 14.
    Menendez J, Wright N. Techniques of posterior C1-C2 stabilization. Neurosurgery. 2007;60(S1):103–11.Google Scholar
  15. 15.
    Mummaneni PV, Lu DC, Dhall SS, Mummaneni VP, Chou D. C1 lateral mass fixation: a comparison of constructs. Neurosurgery. 2010;66(S3):153–60.CrossRefGoogle Scholar
  16. 16.
    Nassos JT, Ghanayem AJ, Sasso RC, Tzermiadianos MN, Voronov LI, Havey RM, et al. Biomechanical evaluation of segmental occipitoatlantoaxial stabilization techniques. Spine. 2009;34(25):2740–4.CrossRefGoogle Scholar
  17. 17.
    Pait TG, Al-Mefty O, Boop FA, Arnautovic KI, Rahman S, Ceola W. Inside–outside technique for posterior occipitocervical spine instrumentation and stabilization: preliminary results. J Neurosrug Spine. 1999;90(1 Suppl):1–7.Google Scholar
  18. 18.
    Sandhu FA, Pait TG, Benzel E, Henderson FC. Occipitocervical fusion for rheumatoid arthritis using the inside-outside stabilization technique. Spine. 2003;28(4):414–9.PubMedGoogle Scholar
  19. 19.
    Takigawa T, Simon P, Espinoza Orias AA, Hong JT, Ito Y, Inoue N, et al. Biomechanical comparison of occiput-C1-C2 fixation techniques: C0-C1 transarticular screw and direct occiput condyle screw. Spine. 2012;37(12):E696–701.CrossRefGoogle Scholar
  20. 20.
    Thomas JA, Tredway T, Fessler RG, Sandhu FA. An alternate method for placement of C-1 screws. J Neurosurg Spine. 2010;12(4):337–41.CrossRefGoogle Scholar
  21. 21.
    Winegar CD, Lawrence JP, Friel BC, Fernandez C, Hong J, Maltenfort M, et al. A systematic review of occipital cervical fusion: techniques and outcomes. J Neurosurg Spine. 2010;13(1):5–16.CrossRefGoogle Scholar
  22. 22.
    Wright NM. Translaminar rigid screw fixation of the axis. Technical note. J Neurosurg Spine. 2005;3(5):409–14.CrossRefGoogle Scholar
  23. 23.
    Young JP, Young PH, Ackermann MJ, Anderson PA, Riew KD. The ponticulus posticus: implications for screw insertion into the first cervical lateral mass. J Bone Joint Surg Am. 2005;87(11):2495–8.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • R. Tushar Jha
    • 1
  • Faheem A. Sandhu
    • 1
  1. 1.Department of NeurosurgeryMedStar Georgetown University HospitalWashington, DCUSA

Personalised recommendations