Advertisement

Lateral Lumbar Interbody Fusion for Lumbar Scoliosis

  • Jeffrey H. Weinreb
  • Uchechi Iweala
  • Danny Lee
  • Warren Yu
  • Joseph R. O’Brien
Chapter

Abstract

Minimally invasive surgery (MIS) of the spine has become an increasingly important concept in spinal surgery. Within the past decade, a lateral MIS approach to the lumbar spine, also known by the trademarked “extreme lateral interbody fusion (XLIF)” (NuVasive, Inc., San Diego, CA), has gained popularity as a new technique. The purpose of this chapter is to examine the benefits and limitations of minimally invasive spine surgery, with a focus on advantages and disadvantages of XLIF for lumbar scoliosis. The discussion of XLIF includes indications, surgical technique, postoperative care, possible complications, and outcomes. The body of literature regarding XLIF compared to both open and minimally invasive approaches is also examined. Finally, a case study following an XLIF patient is reviewed.

Keywords

Minimally invasive spine surgery Lateral lumber interbody fusion Spinal deformity surgery 

References

  1. 1.
    McAfee PC, Phillips FM, Andersson G, Buvenenadran A, Kim CW, Lauryssen C, et al. Minimally invasive spine surgery. Spine. 2010;35(26S):S273.Google Scholar
  2. 2.
    Dhall SS, Wang MY, Mummaneni PV. Clinical and radiographic comparison of mini–open transforaminal lumbar interbody fusion with open transforaminal lumbar interbody fusion in 42 patients with long-term follow-up. J Neurosurg Spine. 2008;9(6):560–5.CrossRefGoogle Scholar
  3. 3.
    Foley KT, Gupta SK. Percutaneous pedicle screw fixation of the lumbar spine: preliminary clinical results. J Neurosurg Spine. 2002;97(1):7–12.CrossRefGoogle Scholar
  4. 4.
    Guiot BH, Khoo LT, Fessler RG. A minimally invasive technique for decompression of the lumbar spine. Spine. 2002;27(4):432–8.CrossRefGoogle Scholar
  5. 5.
    Jaikumar S, Kim DH, Kam AC. History of minimally invasive spine surgery. Neurosurgery. 2002;51(suppl_2):14.CrossRefGoogle Scholar
  6. 6.
    Khoo LT, Palmer S, Laich DT, Fessler RG. Minimally invasive percutaneous posterior lumbar interbody fusion. Neurosurgery. 2002;51(suppl_2):181.Google Scholar
  7. 7.
    Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6(4):435–43.CrossRefGoogle Scholar
  8. 8.
    Peng CWB, Yue WM, Poh SY, Yeo W, Tan SB. Clinical and radiological outcomes of minimally invasive versus open transforaminal lumbar interbody fusion. Spine. 2009;34(13):1385–9.CrossRefGoogle Scholar
  9. 9.
    Dakwar E, Cardona RF, Smith DA, Uribe JS. Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg Focus. 2010;28(3):E8.CrossRefGoogle Scholar
  10. 10.
    Anand N, Rosemann R, Khalsa B, Baron EM. Mid-term to long-term clinical and functional outcomes of minimally invasive correction and fusion for adults with scoliosis. Neurosurg Focus. 2010;28(3):E6.CrossRefGoogle Scholar
  11. 11.
    Phan K, Rao PJ, Scherman DB, Dandie G, Mobbs RJ. Lateral lumbar interbody fusion for sagittal balance correction and spinal deformity. J Clin Neurosci. 2015;22(11):1714–21.CrossRefGoogle Scholar
  12. 12.
    Anand N, Baron EM, Thaiyananthan G, Khalsa K, Goldstein TB. Minimally invasive multilevel percutaneous correction and fusion for adult lumbar degenerative scoliosis: a technique and feasibility study. Clin Spine Surg. 2008;21(7):459–67.Google Scholar
  13. 13.
    Wang MY, Mummaneni PV. Minimally invasive surgery for thoracolumbar spinal deformity: initial clinical experience with clinical and radiographic outcomes. Neurosurg Focus. 2010;28(3):E9.CrossRefGoogle Scholar
  14. 14.
    Moller DJ, Slimack NP, Acosta FL Jr, Koski TR, Fessler RG, Liu JC. Minimally invasive lateral lumbar interbody fusion and transpsoas approach–related morbidity. Neurosurg Focus. 2011;31(4):E4.CrossRefGoogle Scholar
  15. 15.
    Kepler CK, Bogner EA, Herzog RJ, Huang RC. Anatomy of the psoas muscle and lumbar plexus with respect to the surgical approach for lateral transpsoas interbody fusion. Eur Spine J. 2011;20(4):550–6.CrossRefGoogle Scholar
  16. 16.
    Kepler CK. Minimally invasive exposure techniques of the lumbar spine. In: Baron E, Vaccaro A, editors. Operative techniques: spine surgery. 3rd ed. Philadelphia, PA: Elsevier; 2018. p. 387–97.Google Scholar
  17. 17.
    Beckman JM, Uribe JS. MIS lateral lumbar interbody fusion. In: Steinmetz M, Benzel E, editors. Benzel’s spine surgery. 4th ed. Philadelphia, PA: Elsevier; 2017. p. 673.e1.Google Scholar
  18. 18.
    Regev GJ, Chen L, Dhawan M, Lee YP, Garfin SR, Kim CW. Morphometric analysis of the ventral nerve roots and retroperitoneal vessels with respect to the minimally invasive lateral approach in normal and deformed spines. Spine. 2009;34(12):1330–5.CrossRefGoogle Scholar
  19. 19.
    O’Brien J, Haines C, Dooley ZA, Turner AW, Jackson D. Femoral nerve strain at L4–L5 is minimized by hip flexion and increased by table break when performing lateral interbody fusion. Spine. 2014;39(1):33–8.CrossRefGoogle Scholar
  20. 20.
    Ahmadian A, Deukmedjian AR, Abel N, Dakwar E, Uribe JS. Analysis of lumbar plexopathies and nerve injury after lateral retroperitoneal transpsoas approach: diagnostic standardization: a review. J Neurosurg Spine. 2013;18(3):289–97.CrossRefGoogle Scholar
  21. 21.
    Uribe JS, Vale FL, Dakwar E. Electromyographic monitoring and its anatomical implications in minimally invasive spine surgery. Spine. 2010;35(26S):S374.Google Scholar
  22. 22.
    Fogel GR, Parikh RD, Ryu SI, Turner AW. Biomechanics of lateral lumbar interbody fusion constructs with lateral and posterior plate fixation. J Neurosurg Spine. 2014;20(3):291–7.CrossRefGoogle Scholar
  23. 23.
    Laws CJ, Coughlin DG, Lotz JC, Serhan HA, Hu SS. Direct lateral approach to lumbar fusion is a biomechanically equivalent alternative to the anterior approach: an in vitro study. Spine. 2012;37(10):819–25.CrossRefGoogle Scholar
  24. 24.
    Cappuccino A, Cornwall GB, Turner AW, Fogel GR, Duong HT, Kim KD, et al. Biomechanical analysis and review of lateral lumbar fusion constructs. Spine. 2010;35(26S):S367.Google Scholar
  25. 25.
    Kim CW, Raiszadeh K, Garfin SR. Minimally invasive scoliosis treatment. In: Yue J, Guyer R, Johnson JP, Khoo LT, Hochschuler SH, editors. Comprehensive treatment of the aging spine. Philadelphia, PA: Elsevier Saunders; 2011. p. 396–407.CrossRefGoogle Scholar
  26. 26.
    Bach K, Ahmadian A, Deukmedjian A, Uribe JS. Minimally invasive surgical techniques in adult degenerative spinal deformity: a systematic review. Clin Orthop Relat Res. 2014;472(6):1749–61.CrossRefGoogle Scholar
  27. 27.
    Wang MY. Percutaneous iliac screws for minimally invasive spinal deformity surgery. Minim Invasive Surg. 2012;2012:173685.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Baaj AA, Mummaneni PV, Uribe JS, Vaccaro AR, Greenberg MS. 61 minimally invasive lateral retroperitoneal transpsoas interbody fusion. Handbook of spine surgery. 2nd ed. Stuttgart: Georg Thieme Verlag; 2016.Google Scholar
  29. 29.
    Pimenta L, Coutinho E, Sauri Barraza JC, Oliveira L. Lateral XLIF fusion techniques. In: Yue J, Guyer R, Johnson JP, Khoo LT, Hochschuler SH, editors. Comprehensive treatment of the aging spine. Philadelphia, PA: Elsevier Saunders; 2011 p. 408–12.CrossRefGoogle Scholar
  30. 30.
    Sardar ZM, Baron EM, Davis T, Anand N. The transpsoas approach for thoracolumbar interbody fusion. In: Baron E, Vaccaro A, editors. Operative techniques: spine surgery. 3rd ed. Philadelphia, PA: Elsevier; 2018. p. 358–70.Google Scholar
  31. 31.
    Phillips FM, Isaacs RE, Rodgers WB, Khajavi K, Tohmeh AG, Deviren V, et al. Adult degenerative scoliosis treated with XLIF: clinical and radiographical results of a prospective multicenter study with 24-month follow-up. Spine. 2013;38(21):1853–61.CrossRefGoogle Scholar
  32. 32.
    Caputo AM, Michael KW, Chapman TM, Massey GM, Howes CR, Isaacs RE, et al. Clinical outcomes of extreme lateral interbody fusion in the treatment of adult degenerative scoliosis. Sci World J. 2012;2012:680643.CrossRefGoogle Scholar
  33. 33.
    Tormenti MJ, Maserati MB, Bonfield CM, Okonkwo DO, Kanter AS. Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus. 2010;28(3):E7.CrossRefGoogle Scholar
  34. 34.
    Oliveira L, Marchi L, Coutinho E, Pimenta L. A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine. 2010;35(26S):S337.Google Scholar
  35. 35.
    Youssef JA, McAfee PC, Patty CA, Raley E, DeBauche S, Shucosky E, et al. Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine. 2010;35(26S):S311.Google Scholar
  36. 36.
    Acosta FL Jr, Drazin D, Liu JC. Supra-psoas shallow docking in lateral interbody fusion. Neurosurgery. 2013;73(suppl_1):ons52.Google Scholar
  37. 37.
    O’Brien JR. Nerve injury in lateral lumbar interbody fusion. Spine. 2017;42:S24.CrossRefGoogle Scholar
  38. 38.
    Dua K, Kepler CK, Huang RC, Marchenko A. Vertebral body fracture after anterolateral instrumentation and interbody fusion in two osteoporotic patients. Spine J. 2010;10(9):e15.CrossRefGoogle Scholar
  39. 39.
    Le TV, Baaj AA, Dakwar E, Burkett CJ, Murray G, Smith DA, et al. Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion. Spine. 2012;37(14):1268–73.CrossRefGoogle Scholar
  40. 40.
    Keith MW, Yoon ST. Complication avoidance in the lateral approach for interbody fusion. Seminars in Spine Surgery. 2013;25(3):182–90.CrossRefGoogle Scholar
  41. 41.
    Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine. 2013;19(1):110–8.CrossRefGoogle Scholar
  42. 42.
    Sugrue PA, Liu Kim JC. Lateral lumbar interbody fusion. In: Kim DH, Vaccaro AR, Dickman CA, Cho D, Lee S, Kim I, editors. Surgical anatomy and techniques to the spine: Philadelphia, PA: Elsevier Health Sciences; 2013. p. 459–69.Google Scholar
  43. 43.
    Moro T, Kikuchi S, Konno S, Yaginuma H. An anatomic study of the lumbar plexus with respect to retroperitoneal endoscopic surgery. Spine (Phila Pa 1976). 2003;28(5):423–8.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jeffrey H. Weinreb
    • 1
  • Uchechi Iweala
    • 1
  • Danny Lee
    • 2
  • Warren Yu
    • 1
  • Joseph R. O’Brien
    • 3
  1. 1.Department of Orthopaedic SurgeryThe George Washington University HospitalWashington, DCUSA
  2. 2.The George Washington University School of Medicine and Health SciencesWashington, DCUSA
  3. 3.Washington Spine & Scoliosis Institute at OrthoBethesdaBethesdaUSA

Personalised recommendations