Lumbar Corpectomy

  • Danny Lee
  • Ryan Lee
  • Jeffrey H. Weinreb
  • Uchechi Iweala
  • Joseph R. O’Brien


Indications for lumbar corpectomy in addressing spinal pathology include neurological dysfunction, axial instability pain, and intractable radicular pain that may have resulted from deterioration of the vertebral body via malignancy, infection, and trauma/fracture that requires direct decompression of the spinal canal to prevent increasing pathological kyphosis. Traditionally, open anterior approaches have been associated with injury to the great vessels, ureters, abdominal wall, and greater incisional pain, whereas posterior approaches compromise paraspinal musculature. With proper patient selection, lateral approaches to lumbar corpectomy theoretically avoid these complications. With the advent of minimally invasive surgery (MIS) of the spine, new MIS approaches are gaining in popularity due to advantages in decreased soft-tissue trauma, postoperative pain, blood loss, and immobilization. However, this minimally invasive lateral approach to the thoracolumbar spine is not without risks. This chapter will focus on the lateral access for lumbar corpectomy and its associated outcomes previously reported in the literature.


Lumbar corpectomy Lateral approach Spinal fusion 


  1. 1.
    Badrinath R, Sullivan TB, Garfin SR, Allen RT. Posterolateral and lateral Corpectomies. In: Garfin SD, Eismont FJ, Bell GR, Fischgrund JS, Bono CM, editors. Rothman-Simeone and Herkowitz’s the spine. 7th ed. Philadelphia: Saunders, Elsevier; 2018.Google Scholar
  2. 2.
    Mixter WJ, Barr JS. Rupture of the intervertebral disc with involvement of the spinal canal. NEJM. 1934;211(5):210–5.CrossRefGoogle Scholar
  3. 3.
    Barr JS. Ruptured intervertebral disc and sciatic pain. J Bone Joint Surg Am. 1947;29(2):429–37.PubMedGoogle Scholar
  4. 4.
    Waters JD, Ciacci JD. Anterior lumbar Corpectomy. In: Jandial R, McCormic PC, Black PM, editors. Core techniques in operative neurosurgery. 1st ed. Philadelphia: Saunders, Elsevier; 2011.Google Scholar
  5. 5.
    Metcalfe S, Gbejuade H, Patel NR. The posterior Transpedicular approach for circumferential decompression and instrumented stabilization with titanium cage Vertebrectomy reconstruction for spinal tumors – consecutive case series of 50 patients. Spine. 2012;37(16):1375–83.CrossRefGoogle Scholar
  6. 6.
    Murray-Ortiz G, Park MS, Uribe JS. Anterior and lateral lumbar instrumentation. In: Winn HR, editor. Youmans and Winn neurological surgery. 7th ed. Philadelphia: Sunders, Elsevier; 2017.Google Scholar
  7. 7.
    Shousha M, El-Saghir H, Boehm H. Corpectomy of the fifth lumbar vertebra, a challenging procedure. J Spinal Disord Tech. 2014;27(6):347–51.CrossRefGoogle Scholar
  8. 8.
    Richardson B, Paulzak A, Rusyniak WG, Martino A. Anterior lumbar Corpectomy with expandable titanium cage reconstruction: a case series of 42 patients. World Neurosurg. 2017;108:317–24.CrossRefGoogle Scholar
  9. 9.
    Schnake KJ, Stavridis SI, Kandziora F. Five-year clinical and radiological results of combined anteroposterior stabilization of thoracolumbar fractures. J Neurosurg Spine. 2014;20:497–504.CrossRefGoogle Scholar
  10. 10.
    Keshavarzi S, Newman B, Ciacci JD, Aryan HE. Expandable titanium cages for thoracolumbar vertebral body replacement: initial clinical experience and review of the literature. Am J Orthop. 2011;40(3):E35–9.PubMedGoogle Scholar
  11. 11.
    Yang X, Song Y, Liu L, Liu H, Zeng J, Pei F. Anterior reconstruction with nano-hydroxyapatite/polyamide-66 cage after thoracic and lumbar Corpectomy. Orthopedics. 2012;35(1):e66–73.PubMedGoogle Scholar
  12. 12.
    Joubert C, Adetchessi T, Peltier E, Graillon T, Dufour H, Blondel B, Fuentes S. Corpectomy and vertebral body reconstruction with expandable cage placement and Osteosynthesis via the single stage posterior approach: a retrospective series of 34 patients with thoracic and lumbar spine vertebral body tumors. World Neurosurg. 2015;84(5):1412–22.CrossRefGoogle Scholar
  13. 13.
    Carminucci A, Assina R, Hernandez RN, Goldstein IM. Direct midline posterior Corpectomy and fusion of a lumbar burst fracture with Retrosponyloptosis. World Neurosurg. 2017;99:809.e11–4.CrossRefGoogle Scholar
  14. 14.
    Palejwala SK, Lawson KA, Kent SL, Martirosyan NL, Dumont TM. Lumbar corpectomy for correction of degeneration scoliosis from osteoradionecrosis reveals a delayed complication of lumbar myxopapillary ependymoma. J Clin Neurosci. 2016;30:160–2.CrossRefGoogle Scholar
  15. 15.
    Mulbauer M, Pfisterer W, Eyb R, Knosp E. Minimally invasive retroperitoneal approach for lumbar corpectomy and anterior reconstruction. Technical note. J Neurosurg. 2000;93(1 Suppl):161–7.Google Scholar
  16. 16.
    Eck JC. Minimally invasive corpectomy and posterior stabilization for lumbar burst fracture. Spine J. 2011;11(9):904–8.CrossRefGoogle Scholar
  17. 17.
    Elnady B, Shawky A, Abdelrahman H, Elmorshidy E, El-Meshtawy M, Said GZ. Posterior only approach for fifth lumbar corpectomy: indications and technical notes. Int Orthop. 2017;41(12):2535–41.CrossRefGoogle Scholar
  18. 18.
    Knoeller SM, Huwert O, Wolter T. Single stage corpectomy and instrumentation in the treatment of pathological fractures in the lumbar spine. Int Orthop. 2012;36(1):111–7.CrossRefGoogle Scholar
  19. 19.
    Choi JI, Kim BJ, Ha SK, Kim SD, Lim DJ, Kim SH. Single-stage Transpedicular Vertebrectomy and expandable cage placement for treatment of unstable mid and lower lumbar burst fractures. Clin Spine Surg. 2017;30(3):E258–64.CrossRefGoogle Scholar
  20. 20.
    Pham MH, Tuchman A, Chen TC, Acosta FL, Hseih PC, Liu JC. Transpedicular Corpectomy and cage placement in the treatment of traumatic lumbar burst fractures. Clin Spine Surg. 2017;30(8):360–6.CrossRefGoogle Scholar
  21. 21.
    Dimar JR, Fisher C, Vaccaro AR, Akonkwo DO, Dvorak M, Fehlings M, Rampersaud R, Carreon LY. Predictors of complications after spinal stabilization of thoracolumbar spine injuries. J Trauma. 2010;69(6):1497–500.CrossRefGoogle Scholar
  22. 22.
    Dhall SS, Wang MY, Mummaneni PV. Clinical and radiographic comparison of mini-open transforaminal lumbar interbody fusion with open transforaminal lumbar interbody fusion in 42 patients with long-term follow-up. J Neurosurg Spine. 2008;9(6):560–5.CrossRefGoogle Scholar
  23. 23.
    Foley KT, Gupta SK. Percutaneous pedicle screw fixation of the lumbar spine: preliminary clinical results. J Neurosurg. 2002;97(1 Suppl):7–12.PubMedGoogle Scholar
  24. 24.
    Guiot BH, Khoo LT, Fessler RG. A minimally invasive technique for decompression of the lumbar spine. Spine (Phila Pa 1976). 2002;27(4):432–8.CrossRefGoogle Scholar
  25. 25.
    Jaikumar S, Kim DH, Kam AC. History of minimally invasive spine surgery. Neurosurgery. 2002;51(5 Suppl):S1–14.PubMedGoogle Scholar
  26. 26.
    Khoo LT, Plamer S, Laich DT, Fessler RG. Minimally invasive percutaneous posterior lumbar interbody fusion. Neurosurgery. 2002;51(5 Suppl):S166–81.PubMedGoogle Scholar
  27. 27.
    Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6(4):435–43.CrossRefGoogle Scholar
  28. 28.
    Peng CW, Yue WM, Poh SY, Yeo W, Tan SB. Clinical and radiological outcomes of minimally invasive versus open transforaminal lumbar interbody fusion. Spine (Phila Pa 1976). 2009;34(13):1385–9.CrossRefGoogle Scholar
  29. 29.
    Dakwar E, Cardona RF, Smith DA, Uribe JS. Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg Focus. 2010;28(3):E8.CrossRefGoogle Scholar
  30. 30.
    Anand N, Rosemann R, Khalsa B, Baron EM. Mid-term to long-term clinical and functional outcomes of minimally invasive correction and fusion for adults with scoliosis. Neurosurg Focus. 2010;28(3):E6.CrossRefGoogle Scholar
  31. 31.
    Baaj AA, Dakwar E, Le TV, Smith DA, Ramos E, Smith WD, Uribe JS. Complications of the mini-open anterolateral approach to the thoracolumbar spine. J Clin Neurosci. 2012;19(9):1265–7.CrossRefGoogle Scholar
  32. 32.
    Adkins DE, Sandhu FA, Voyadzis JM. Minimally invasive lateral approach to the thoracolumbar junction for corpectomy. J Clin Neurosci. 2013;20(9):1289–94.CrossRefGoogle Scholar
  33. 33.
    Amaral R, Marchi L, Oliveria L, Coutinho T, Pimenta L. Acute lumbar burst fracture treated by minimally invasive lateral corpectomy. Case Rep Orthop. 2013;2013:953897.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Smith WD, Dakwar E, Le TV, Christian G, Serrano S, Uribe JS. Minimally invasive surgery for traumatic spinal pathologies. Spine. 2010;35(26S):S338–46.CrossRefGoogle Scholar
  35. 35.
    Gandhoke GS, Tempel ZJ, Bonfield CM, Madhok R, Okonkwo DO, Kanter AS. Technical nuances of the minimally invasive extreme lateral approach to treat thoracolumbar burst fractures. Eur Spine J. 2015;24(Suppl 3):S353–60.CrossRefGoogle Scholar
  36. 36.
    Patel NB, Dodd ZH, Voorhies J, Horn EM. Minimally invasive lateral transpsoas approach for spinal discitis and osteomyelitis. J Clin Neurosci. 2015;22(11):1753–7.CrossRefGoogle Scholar
  37. 37.
    Tan T, Chu J, Thien C, Wang YY. Minimally invasive direct lateral Corpectomy of the thoracolumbar spine for metastatic spinal cord compression. J Neurol Surg A Cent Eur Neurosurg. 2017;78(4):358–67.CrossRefGoogle Scholar
  38. 38.
    Serak J, Vanni S, Levi AD. The extreme lateral approach for treatment of thoracic and lumbar vertebral body metastases. J Neurosurg Sci. 2015;63(4):473–8.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Danny Lee
    • 1
  • Ryan Lee
    • 1
  • Jeffrey H. Weinreb
    • 2
  • Uchechi Iweala
    • 2
  • Joseph R. O’Brien
    • 3
  1. 1.The George Washington University School of Medicine and Health SciencesWashington, DCUSA
  2. 2.Department of Orthopaedic Surgery, The George Washington University HospitalWashington, DCUSA
  3. 3.Washington Spine & Scoliosis Institute at OrthoBethesdaBethesdaUSA

Personalised recommendations