Advertisement

The Effects of Genetic Disorders on Language

  • Natalia Freitas Rossi
  • Célia Maria Giacheti
Chapter
Part of the Autism and Child Psychopathology Series book series (ACPS)

Abstract

This chapter aims to provide a summary of the neurobiological perspective of language evolution as the central thread and to show how language, brain, and genetic studies are linked. We will then move toward some neurobiological markers of language evolution and their disruptions, with their impact on spoken language. Terminologies related to language disorders will also be discussed (Language Disorders vs. Developmental Language Disorders). Furthermore, the chapter will also explore three well-defined genetic conditions (Down syndrome, Fragile X syndrome, and Williams syndrome), and explore the linguistic manifestations, intellectual functioning, and behavioral characteristics that contribute to the specificity of the language phenotype in these genetic disorders. The effects of genetic disorders on language are different in each genetic condition; therefore, knowledge of the language characteristics of each genetic condition can guide in assessment of the condition and help formulate a more intensive and individualized intervention program, and thereby improve the language and communication needs of individuals with these conditions.

References

  1. Abbeduto, L., Brady, N., & Kover, S. T. (2007). Language development and fragile X syndrome: Profiles, syndrome-specificity, and within-syndrome differences. Mental Retardation And Developmental Disabilities Research Reviews, 13(1), 36–46.PubMedCrossRefGoogle Scholar
  2. Abbeduto, L., Pavetto, M., Kesin, E., Weissman, M., Karadottir, S., O’Brien, A., & Cawthon, S. (2001). The linguistic and cognitive profile of Down syndrome: Evidence from a comparison with fragile X syndrome. Down Syndrome Research and Practice, 7(1), 9–15.CrossRefGoogle Scholar
  3. Adolphs, R. (2001). The neurobiology of social cognition. Current Opinion in Neurobiology, 11(2), 231–239.PubMedCrossRefGoogle Scholar
  4. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub.Google Scholar
  5. American Speech-Language-Hearing Association. (1993). Definitions of communication disorders and variations.Google Scholar
  6. American Speech-Language-Hearing Association. (2007). Childhood apraxia of speech.Google Scholar
  7. Andersen, S. L. (2003). Trajectories of brain development: point of vulnerability or window of opportunity? Neuroscience & Biobehavioral Reviews, 27(1), 3–18.CrossRefGoogle Scholar
  8. Baty, B. F., Carey, J. C., & McMahon, W. M. (2010). Neurodevelopmental disorders and medical genetics: an overview. In S. Goldstein & C. R. Reynolds (Eds.), Handbook of neurodevelopmental and genetic disorders in children (2nd ed.). Guilford Press.Google Scholar
  9. Bellugi, U., Wang, P. P., & Jernigan, T. L. (1994). Williams syndrome: An unusual neuropsychological profile. Atypical Cognitive Deficits In Developmental Disorders: Implications For Brain Function, 23, 23–56.Google Scholar
  10. Bennett, R. L., French, K. S., Resta, R. G., & Doyle, D. L. (2008). Standardized human pedigree nomenclature: update and assessment of the recommendations of the National Society of Genetic Counselors. Journal Of Genetic Counseling, 17(5), 424–433.PubMedCrossRefGoogle Scholar
  11. Bishop, D., & Rutter, M. (2008). Neurodevelopmental disorders: Conceptual issues. In Rutter’s child and adolescent psychiatry (pp. 32–41). Oxford: Blackwell.CrossRefGoogle Scholar
  12. Bishop, D. V. (2006). What causes specific language impairment in children? Current Directions in Psychological Science, 15(5), 217–221.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bishop, D. V. (2010). Which neurodevelopmental disorders get researched and why? PLoS One, 5(11), e15112.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bishop, D. V. (2014). Ten questions about terminology for children with unexplained language problems. International Journal of Language & Communication Disorders, 49(4), 381–415.CrossRefGoogle Scholar
  15. Bishop, D. V. (2017). Why is it so hard to reach agreement on terminology? The case of developmental language disorder (DLD). International Journal of Language & Communication Disorders, 52(6), 671–680.CrossRefGoogle Scholar
  16. Bishop, D. V., & Snowling, M. J. (2004). Developmental dyslexia and specific language impairment: Same or different? Psychological Bulletin, 130(6), 858.PubMedCrossRefGoogle Scholar
  17. Bishop, D. V., Snowling, M. J., Thompson, P. A., & Greenhalgh, T. (2016). CATALISE: A multinational and multidisciplinary Delphi consensus study. Identifying language impairments in children. PLoS One, 11(7), e0158753.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bishop, D. V., Snowling, M. J., Thompson, P. A., Greenhalgh, T., Catalise-2 Consortium, Adams, C., ... & Boyle, C. (2017). Phase 2 of CATALISE: A multinational and multidisciplinary Delphi consensus study of problems with language development: Terminology. Journal of Child Psychology and Psychiatry, 58(10), 1068-1080.Google Scholar
  19. Bishop, D. V. M., & Hayiou-Thomas, M. E. (2008). Heritability of specific language impairment depends on diagnostic criteria. Genes, Brain and Behavior, 7(3), 365–372.CrossRefGoogle Scholar
  20. Brock, J. (2007). Language abilities in Williams syndrome: A critical review. Development and Psychopathology, 19(1), 97–127.PubMedCrossRefGoogle Scholar
  21. Budimirovic, D. B., Protic, D., & Toma, A. E. (2017). Fragile X syndrome: leading the way as the most common monogenic form of autism spectrum disorder and the most translated among neurodevelopmental disorders in clinical trials. Journal of Clinical Genetics and Genomics, (1), 1.Google Scholar
  22. Camp, J. S., Karmiloff-Smith, A., Thomas, M. S., & Farran, E. K. (2016). Cross-syndrome comparison of real-world executive functioning and problem solving using a new problem-solving questionnaire. Research in Developmental Disabilities, 59, 80–92.PubMedCrossRefGoogle Scholar
  23. Carrigg, B., Parry, L., Baker, E., Shriberg, L. D., & Ballard, K. J. (2016). Cognitive, Linguistic, and Motor Abilities in a Multigenerational Family with Childhood Apraxia of Speech. Archives of Clinical Neuropsychology, 31(8), 1006–1025.Google Scholar
  24. Centanni, T. M., Sanmann, J. N., Green, J. R., Iuzzini-Seigel, J., Bartlett, C., Sanger, W. G., & Hogan, T. P. (2015). The role of candidate-gene CNTNAP2 in childhood apraxia of speech and specific language impairment. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 168(7), 536–543.CrossRefGoogle Scholar
  25. Channell, M. M., Phillips, B. A., Loveall, S. J., Conners, F. A., Bussanich, P. M., & Klinger, L. G. (2015). Patterns of autism spectrum symptomatology in individuals with Down syndrome without comorbid autism spectrum disorder. Journal of Neurodevelopmental Disorders, 7(1), 5.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chater, N., & Christiansen, M. H. (2010). Language evolution as cultural evolution: how language is shaped by the brain. Wiley Interdisciplinary Reviews: Cognitive Science, 1(5), 623–628.PubMedGoogle Scholar
  27. Christiansen, M. H., & Kirby, S. (2003). Language evolution: Consensus and controversies. Trends in Cognitive Sciences, 7(7), 300–307.PubMedCrossRefGoogle Scholar
  28. Conti-Ramsden, G., Ullman, M. T., & Lum, J. A. (2015). The relation between receptive grammar and procedural, declarative, and working memory in specific language impairment. Frontiers in Psychology, 6, 1090.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Couture, S. M., Penn, D. L., Losh, M., Adolphs, R., Hurley, R., & Piven, J. (2010). Comparison of social cognitive functioning in schizophrenia and high functioning autism: more convergence than divergence. Psychological Medicine, 40(4), 569–579.PubMedCrossRefGoogle Scholar
  30. de Sousa, A., & Cunha, E. (2012). Hominins and the emergence of the modern human brain. In Progress in brain research (Vol. 195, pp. 293–322). Amsterdam: Elsevier.Google Scholar
  31. Deacon, T. W. (1998). The symbolic species: The co-evolution of language and the brain. New York: WW Norton & Company.Google Scholar
  32. Decety, J., Bartal, I. B. A., Uzefovsky, F., & Knafo-Noam, A. (2016). Empathy as a driver of prosocial behaviour: Highly conserved neurobehavioural mechanisms across species. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1686), 20150077.CrossRefGoogle Scholar
  33. Diez-Itza, E., Martínez, V., Pérez, V., & Fernández-Urquiza, M. (2018). Explicit oral narrative intervention for students with Williams syndrome. Frontiers in Psychology, 8, 2337.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dimitrova, N., Özçalışkan, Ş., & Adamson, L. B. (2016). Parents’ translations of child gesture facilitate word learning in children with autism, Down syndrome and typical development. Journal of Autism and Developmental Disorders, 46(1), 221–231.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dodd, B. (2014). Differential diagnosis of pediatric speech sound disorder. Current Developmental Disorders Reports, 1(3), 189–196.CrossRefGoogle Scholar
  36. Dodd, B., & Thompson, L. (2001). Speech disorder in children with Down’s syndrome. Journal of Intellectual Disability Research, 45(4), 308–316.PubMedCrossRefGoogle Scholar
  37. Eggers, K., & Van Eerdenbrugh, S. (2018). Speech disfluencies in children with Down Syndrome. Journal of Communication Disorders, 71, 72–84.PubMedCrossRefGoogle Scholar
  38. Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S., Wiebe, V., Kitano, T., … Pääbo, S. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418(6900), 869.PubMedCrossRefGoogle Scholar
  39. Finestack, L. H., Palmer, M., & Abbeduto, L. (2012). Macrostructural narrative language of adolescents and young adults with Down syndrome or fragile X syndrome. American Journal of Speech-Language Pathology, 21(1), 29–46.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Fiori, S., Guzzetta, A., Mitra, J., Pannek, K., Pasquariello, R., Cipriani, P., … Chilosi, A. (2016). Neuroanatomical correlates of childhood apraxia of speech: A connectomic approach. NeuroImage: Clinical, 12, 894–901.CrossRefGoogle Scholar
  41. Fisher, S. E., Vargha-Khadem, F., Watkins, K. E., Monaco, A. P., & Pembrey, M. E. (1998). Localisation of a gene implicated in a severe speech and language disorder. Nature Genetics, 18(2), 168–170.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Flenthrope, J. L., & Brady, N. C. (2010). Relationships between early gestures and later language in children with fragile X syndrome. American Journal of Speech-Language Pathology, 19(2), 135–142.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Friederici, A. D. (2006). The neural basis of language development and its impairment. Neuron, 52(6), 941–952.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Friederici, A. D. (2017). Evolution of the neural language network. Psychonomic Bulletin & Review, 24, 41–47.CrossRefGoogle Scholar
  45. Friend, M., & Bates, R. P. (2014). The union of narrative and executive function: different but complementary. Frontiers in Psychology, 5, 469.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Frigerio-Domingues, C., & Drayna, D. (2017). Genetic contributions to stuttering: the current evidence. Molecular Genetics & Genomic Medicine, 5(2), 95–102.CrossRefGoogle Scholar
  47. Fuster, J. M. (2002). Frontal lobe and cognitive development. Journal of Neurocytology, 31(3-5), 373–385.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Garayzábal Heinze, E., Prieto, M. F., Sampaio, A., & Gonçalves, Ó. F. (2007). Valoración interlingüística de la producción verbal a partir de una tarea narrativa en el síndrome de Williams. Psicothema, 19(3), 428–434.PubMedPubMedCentralGoogle Scholar
  49. Giacheti, C.M., Medina, F.D.D., Rossi, N.F. (2010). Análise comparativa do perfil da fluência da fala de indivíduos com síndrome de Down e com a síndrome de Williams-Beuren. Anais 17 Congresso Brasileiro de Fonoaudiologia, Salvador-Ba. Disponível em http://www.sbfa.org.br/portal/anais2009/resumos/R1531-1.pdf
  50. Giacheti, C. M., & Rossi, N. F. R. (2012). Chapter 4: Síndromes genéticas. In A. S. Lopes-Herrera & L. P. Maximino (Eds.), Fonoaudiologia: Intervenções e Alterações da Linguagem Oral Infantil (pp. 61–76). Ribeirão Preto: Novo Conceito.Google Scholar
  51. Girbau, D. (2016). The Non-word Repetition Task as a clinical marker of Specific Language Impairment in Spanish-speaking children. First Language, 36(1), 30–49.CrossRefGoogle Scholar
  52. Goldstein, S., & Reynolds, C. R. (2010). Handbook of neurodevelopmental and genetic disorders in children (2nd ed.). New York: Guilford Press.Google Scholar
  53. Goldstein, T. R., & Winner, E. (2012). Enhancing empathy and theory of mind. Journal of Cognition and Development, 13(1), 19–37.CrossRefGoogle Scholar
  54. Gonçalves, Ó. F., Pinheiro, A. P., Sampaio, A., Sousa, N., Férnandez, M., & Henriques, M. (2010). The narrative profile in Williams Syndrome: There is more to storytelling than just telling a story. The British Journal of Development Disabilities, 56(111), 89–109.CrossRefGoogle Scholar
  55. Gosch, A., & Pankau, R. (1997). Personality characteristics and behaviour problems in individuals of different ages with Williams syndrome. Developmental Medicine & Child Neurology, 39(8), 527–533.CrossRefGoogle Scholar
  56. Grandjean, P., & Landrigan, P. J. (2014). Neurobehavioural effects of developmental toxicity. The Lancet Neurology, 13(3), 330–338.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Grieco, J., Pulsifer, M., Seligsohn, K., Skotko, B., & Schwartz, A. (2015). Down syndrome: Cognitive and behavioral functioning across the lifespan. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 169(2), 135–149.CrossRefGoogle Scholar
  58. Hahn, L. J. (2016). Joint attention and early social developmental cascades in neurogenetic disorders. In International review of research in developmental disabilities (Vol. 51, pp. 123–152). Cambridge, MA: Academic Press.Google Scholar
  59. Han, T. U., Park, J., Domingues, C. F., Moretti-Ferreira, D., Paris, E., Sainz, E., … Drayna, D. (2014). A study of the role of the FOXP2 and CNTNAP2 genes in persistent developmental stuttering. Neurobiology of Disease, 69, 23–31.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hannenhalli, S., & Kaestner, K. H. (2009). The evolution of Fox genes and their role in development and disease. Nature Reviews Genetics, 10(4), 233.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hauser, M. D., Yang, C., Berwick, R. C., Tattersall, I., Ryan, M. J., Watumull, J., … Lewontin, R. C. (2014). The mystery of language evolution. Frontiers in Psychology, 5, 401.PubMedPubMedCentralGoogle Scholar
  62. Hoff, E. (2013). Language development. Cengage Learning.Google Scholar
  63. Holland, S. K., Vannest, J., Mecoli, M., Jacola, L. M., Tillema, J. M., Karunanayaka, P. R., … Byars, A. W. (2007). Functional MRI of language lateralization during development in children. International Journal of Audiology, 46(9), 533–551.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Jarrold, C., Baddeley, A. D., Hewes, A. K., & Phillips, C. (2001). A longitudinal assessment of diverging verbal and non-verbal abilities in the Williams syndrome phenotype. Cortex, 37(3), 423–431.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Järvinen, A., Korenberg, J. R., & Bellugi, U. (2013). The social phenotype of Williams syndrome. Current Opinion in Neurobiology, 23(3), 414–422.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Johns Hopkins University. (2018a) # 190685 Down syndrome. In Johns Hopkins University. OMIM: online mendelian inheritance in man 1966–2019. Baltimore: Johns Hopkins University. Retrieved from: https://www.omim.org/entry/190685.
  67. Johns Hopkins University. (2018b). # 194050 Williams syndrome. In Johns Hopkins University. OMIM: online mendelian inheritance in man 1966–2019. Baltimore: Johns Hopkins University. Retrieved from: https://www.omim.org/entry/194050.
  68. Johns Hopkins University. (2018c). # 300624 Fragile X syndrome. In Johns Hopkins University. OMIM: online mendelian inheritance in man 1966–2019. Baltimore: Johns Hopkins University. Retrieved from: https://www.omim.org/entry/300624.
  69. Johns Hopkins University. (2018d). # 606711 Specific language impairment 1. In Johns Hopkins University. OMIM: online mendelian inheritance in man 1966–2019. Baltimore: Johns Hopkins University. Retrieved from: https://www.omim.org/entry/606711.
  70. Johns Hopkins University. (2018e). # 606712 Specific language impairment 2. In Johns Hopkins University. OMIM: online mendelian inheritance in man 1966–2019. Baltimore: Johns Hopkins University. Retrieved from: https://www.omim.org/entry/606712.
  71. Johns Hopkins University. (2018f). # 607134 Specific language impairment 3. In Johns Hopkins University. OMIM: online mendelian inheritance in man 1966–2019. Baltimore: Johns Hopkins University. Retrieved from: https://www.omim.org/entry/607134.
  72. Johns Hopkins University. (2018g). # 612514 Specific language impairment 4. In Johns Hopkins University. OMIM: online mendelian inheritance in man 1966–2019. Baltimore: Johns Hopkins University. Retrieved from: https://www.omim.org/entry/612514.
  73. Johns Hopkins University. (2018h). # 615432 Specific language impairment 5. In Johns Hopkins University. OMIM: online mendelian inheritance in man 1966–2019. Baltimore: Johns Hopkins University. Retrieved from: https://www.omim.org/entry/615432.
  74. Johns Hopkins University. (2018i). # 605317 Forkhead Fox P2. In Johns Hopkins University. OMIM: online mendelian inheritance in man 1966–2019. Baltimore: Johns Hopkins University. Retrieved from: https://www.omim.org/entry/605317.
  75. Johns Hopkins University. (2018j). # 602081 Speech-Language disorder 1. In Johns Hopkins University. OMIM: online mendelian inheritance in man 1966–2019. Baltimore: Johns Hopkins University. Retrieved from: https://www.omim.org/entry/602081.
  76. Johns Hopkins University. (2018k). # 608445 Speech-Sound disorder. In Johns Hopkins University. OMIM: online mendelian inheritance in man 1966–2019. Baltimore: Johns Hopkins University. Retrieved from: https://www.omim.org/entry/608445.
  77. Johns Hopkins University. (2018l). # 184450 Stuttering familial persistent 1. In Johns Hopkins University. OMIM: online mendelian inheritance in man 1966–2019. Baltimore: Johns Hopkins University. Retrieved from: https://www.omim.org/entry/184450.
  78. Johns Hopkins University. (2018m). # 609261 Stuttering familial persistent 2. In Johns Hopkins University. OMIM: online mendelian inheritance in man 1966–2019. Baltimore: Johns Hopkins University. Retrieved from: https://www.omim.org/entry/609261.
  79. Johns Hopkins University. (2018n). # 614655 Stuttering familial persistent 3. In Johns Hopkins University. OMIM: online mendelian inheritance in man 1966–2019. Baltimore: Johns Hopkins University. Retrieved from: https://www.omim.org/entry/614655.
  80. Johns Hopkins University. (2018o). # 614668 Stuttering familial persistent 4. In Johns Hopkins University. OMIM: online mendelian inheritance in man 1966–2019. Baltimore: Johns Hopkins University. Retrieved from: https://www.omim.org/entry/614668.
  81. Järvinen-Pasley, A., Bellugi, U., Reilly, J., Debra, L., Galaburda, A., Reiss, A. L., & Korenberg, J. R. (2008). Defining the social phenotype in Williams syndrome: a model for linking gene, the brain, and behavior. Development and Psychopathology, 20(1), 1–35.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Karmiloff-Smith, A. (1992). Beyond modularity: a developmental approach to cognitive science. Cambridge: MIT Press.Google Scholar
  83. Karmiloff-Smith, A. (1997). Crucial differences between developmental cognitive neuroscience and adult neuropsychology. Developmental Neuropsychology, 13(4), 513–524.CrossRefGoogle Scholar
  84. Karmiloff-Smith, A. (2018). Development itself is the key to understanding developmental disorders. In Thinking developmentally from constructivism to neuroconstructivism (pp. 97–117). Abingdon: Routledge.CrossRefGoogle Scholar
  85. Karmiloff-Smith, A., Brown, J. H., Grice, S., & Paterson, S. (2003). Dethroning the myth: Cognitive dissociations and innate modularity in Williams syndrome. Developmental Neuropsychology, 23(1-2), 227–242.PubMedCrossRefGoogle Scholar
  86. Kazemi, N., Estiar, M. A., Fazilaty, H., & Sakhinia, E. (2018). Variants in GNPTAB, GNPTG and NAGPA genes are associated with stutterers. Gene, 647, 93–100.PubMedCrossRefGoogle Scholar
  87. Klein-Tasman, B. P., van der Fluit, F., & Mervis, C. B. (2018). Autism Spectrum Symptomatology in Children with Williams Syndrome Who Have Phrase Speech or Fluent Language. Journal of Autism and Developmental Disorders, 1–14.Google Scholar
  88. Knowland, V. C., & Thomas, M. S. (2011). Developmental trajectories in genetic disorders. In International review of research in developmental disabilities (Vol. 40, pp. 43–73). Cambridge, MA: Academic Press.CrossRefGoogle Scholar
  89. Krishnan, S., Bergström, L., Alcock, K. J., Dick, F., & Karmiloff-Smith, A. (2015). Williams syndrome: A surprising deficit in oromotor praxis in a population with proficient language production. Neuropsychologia, 67, 82–90.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kumin, L. (2006). Speech intelligibility and childhood verbal apraxia in children with Down syndrome. Down Syndrome Research and Practice, 10(1), 10–22.CrossRefGoogle Scholar
  91. Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413(6855), 519.CrossRefGoogle Scholar
  92. Lai, C. S., Gerrelli, D., Monaco, A. P., Fisher, S. E., & Copp, A. J. (2003). FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain, 126(11), 2455–2462.PubMedCrossRefGoogle Scholar
  93. Laing, E., Butterworth, G., Ansari, D., Gsödl, M., Longhi, E., Panagiotaki, G., … Karmiloff-Smith, A. (2002). Atypical development of language and social communication in toddlers with Williams syndrome. Developmental Science, 5(2), 233–246.CrossRefGoogle Scholar
  94. Langen, M., Durston, S., Kas, M. J., van Engeland, H., & Staal, W. G. (2011). The neurobiology of repetitive behavior:… and men. Neuroscience & Biobehavioral Reviews, 35(3), 356–365.CrossRefGoogle Scholar
  95. Laws, G., & Bishop, D. V. (2004). Pragmatic language impairment and social deficits in Williams syndrome: A comparison with Down’s syndrome and specific language impairment. International Journal of Language & Communication Disorders, 39(1), 45–64.CrossRefGoogle Scholar
  96. Leonard, L. B. (2014). Children with specific language impairment. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  97. Lewis, B. A., Freebairn, L. A., Hansen, A. J., Iyengar, S. K., & Taylor, H. G. (2004). School-age follow-up of children with childhood apraxia of speech. Language, Speech, and Hearing Services in Schools, 35(2), 122–140.PubMedCrossRefGoogle Scholar
  98. Lorang, E., Sterling, A., & Schroeder, B. (2018). Maternal responsiveness to gestures in children with Down syndrome. American Journal of Speech-Language Pathology, 27(3), 1018–1029.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Losh, M., Bellugi, U., & Reilly, J. (2000). Narrative as a social engagement tool: The excessive use of evaluation in narratives from children with Williams syndrome. Narrative Inquiry, 10(2), 265–290.CrossRefGoogle Scholar
  100. Luyster, R. J., Seery, A., Talbott, M. R., & Tager-Flusberg, H. (2011). Identifying Early-Risk Markers and Developmental Trajectories for Language Impairment in Neurodevelopmental Disorders. Developmental Disabilities Research Reviews, 17(2), 151–159.PubMedCrossRefGoogle Scholar
  101. Martens, M. A., Wilson, S. J., & Reutens, D. C. (2008). Research review: Williams syndrome: a critical review of the cognitive, behavioral, and neuroanatomical phenotype. Journal of Child Psychology and Psychiatry, 49(6), 576–608.PubMedCrossRefGoogle Scholar
  102. Martin, G. E., Barstein, J., Hornickel, J., Matherly, S., Durante, G., & Losh, M. (2017). Signaling of noncomprehension in communication breakdowns in fragile X syndrome, Down syndrome, and autism spectrum disorder. Journal of Communication Disorders, 65, 22–34.PubMedPubMedCentralCrossRefGoogle Scholar
  103. McDuffie, A., Thurman, A. J., Hagerman, R. J., & Abbeduto, L. (2015). Symptoms of autism in males with fragile X syndrome: A comparison to nonsyndromic ASD using current ADI-R scores. Journal of Autism and Developmental Disorders, 45(7), 1925–1937.PubMedPubMedCentralCrossRefGoogle Scholar
  104. McKusick, V. A. (2007). Mendelian Inheritance in Man and its online version, OMIM. The American Journal of Human Genetics, 80(4), 588–604.PubMedCrossRefGoogle Scholar
  105. Mervis, C. B., & Becerra, A. M. (2007). Language and communicative development in Williams syndrome. Mental Retardation and Developmental Disabilities Research Reviews, 13(1), 3–15.PubMedCrossRefGoogle Scholar
  106. Mervis, C. B., & Robinson, B. F. (2005). Designing measures for profiling and genotype/phenotype studies of individuals with genetic syndromes or developmental language disorders. Applied Psycholinguistics, 26(1), 41–64.CrossRefGoogle Scholar
  107. Mervis, C. B., Robinson, B. F., Bertrand, J., Morris, C. A., Klein-Tasman, B. P., & Armstrong, S. C. (2000). The Williams syndrome cognitive profile. Brain and Cognition, 44(3), 604–628.PubMedCrossRefGoogle Scholar
  108. Miller, B. L., & Cummings, J. L. (Eds.). (2017). The human frontal lobes: Functions and disorders. London: Guilford Publications.Google Scholar
  109. Newbury, D. F., Bishop, D. V., & Monaco, A. P. (2005). Genetic influences on language impairment and phonological short-term memory. Trends in Cognitive Sciences, 9(11), 528–534.PubMedCrossRefGoogle Scholar
  110. Newbury, D. F., Bonora, E., Lamb, J. A., Fisher, S. E., Lai, C. S., Baird, G., … Bolton, P. F. (2002). FOXP2 is not a major susceptibility gene for autism or specific language impairment. The American Journal of Human Genetics, 70(5), 1318–1327.PubMedCrossRefGoogle Scholar
  111. Nogueira, P. R., Oliveira, C. M. C. D., Giacheti, C. M., & Moretti-Ferreira, D. (2015). Familial persistent developmental stuttering: disfluencies and prevalence. Revista CEFAC, 17(5), 1441–1448.CrossRefGoogle Scholar
  112. Oliveira, B. V. D., Domingues, C. E. F., Juste, F. S., Andrade, C. R. F. D., & Moretti-Ferreira, D. (2012). Gagueira desenvolvimental persistente familial: perspectivas genéticas. Revista da Sociedade Brasileira de Fonoaudiologia, 17(4), 489–494.CrossRefGoogle Scholar
  113. Online Mendelian Inheritance in Man, OMIM®. (2018). McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, (July, 19, 2018). Retrieved from https://omim.org/
  114. Petrin, A. L., Giacheti, C. M., Maximino, L. P., Abramides, D. V., Zanchetta, S., Rossi, N. F., … Murray, J. C. (2010). Identification of a microdeletion at the 7q33-q35 disrupting the CNTNAP2 gene in a Brazilian stuttering case. American Journal of Medical Genetics Part A, 152(12), 3164–3172.CrossRefGoogle Scholar
  115. Philofsky, A., Fidler, D. J., & Hepburn, S. (2007). Pragmatic language profiles of school-age children with autism spectrum disorders and Williams syndrome. American Journal of Speech-Language Pathology, 16(4), 368–380.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Poeppel, D. (2014). The neuroanatomic and neurophysiological infrastructure for speech and language. Current opinion in Neurobiology, 28, 142–149.PubMedCrossRefGoogle Scholar
  117. Potter, H. (2016). Beyond trisomy 21: phenotypic variability in people with Down syndrome explained by further chromosome mis-segregation and mosaic aneuploidy. Journal of Down Syndrome & Chromosome Abnormalities, 2(1), 109.CrossRefGoogle Scholar
  118. Rague, L., Caravella, K., Tonnsen, B., Klusek, J., & Roberts, J. (2018). Early gesture use in fragile X syndrome. Journal of Intellectual Disability Research, 62(7), 625–636.PubMedCrossRefGoogle Scholar
  119. Reilly, J., Losh, M., Bellugi, U., & Wulfeck, B. (2004). “Frog, where are you?” Narratives in children with specific language impairment, early focal brain injury, and Williams syndrome. Brain and Language, 88(2), 229–247.PubMedCrossRefGoogle Scholar
  120. Reilly, S., Bishop, D. V., & Tomblin, B. (2014). Terminological debate over language impairment in children: Forward movement and sticking points. International Journal of Language & Communication Disorders, 49(4), 452–462.CrossRefGoogle Scholar
  121. Riby, D. M., & Hancock, P. J. (2008). Viewing it differently: Social scene perception in Williams syndrome and autism. Neuropsychologia, 46(11), 2855–2860.PubMedCrossRefGoogle Scholar
  122. Rice, D., & Barone, S., Jr. (2000). Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environmental Health Perspectives, 108(Suppl 3), 511.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Rice, M. L., Warren, S. F., & Betz, S. K. (2005). Language symptoms of developmental language disorders: An overview of autism, Down syndrome, fragile X, specific language impairment, and Williams syndrome. Applied Psycholinguistics, 26(1), 7–27.CrossRefGoogle Scholar
  124. Roby-Brami, A., Hermsdörfer, J., Roy, A. C., & Jacobs, S. (2012). A neuropsychological perspective on the link between language and praxis in modern humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1585), 144–160.CrossRefGoogle Scholar
  125. Rodenas-Cuadrado, P., Ho, J., & Vernes, S. C. (2014). Shining a light on CNTNAP2: Complex functions to complex disorders. European Journal of Human Genetics, 22(2), 171.PubMedCrossRefGoogle Scholar
  126. Rodenhiser, D., & Mann, M. (2006). Epigenetics and human disease: Translating basic biology into clinical applications. Canadian Medical Association Journal, 174(3), 341–348.PubMedCrossRefGoogle Scholar
  127. Ross, L. A., Del Bene, V. A., Molholm, S., Woo, Y. J., Andrade, G. N., Abrahams, B. S., & Foxe, J. J. (2017). Common variation in the autism risk gene CNTNAP2, brain structural connectivity and multisensory speech integration. Brain and Language, 174, 50–60.PubMedCrossRefGoogle Scholar
  128. Rossi, N. F. (2016) Uso das técnicas de ressonância magnética funcional e eletroencefalografia nos estudos sobre o desenvolvimento da linguagem. Avaliação da fala e da linguagem, 109.Google Scholar
  129. Rossi, N. F., Garayzábal-Heinze, E., Sampaio, A., Gonçalves, Ó. F., & Giacheti, C. M. (2015). Narrativa oral na síndrome de Williams e no desenvolvimento típico: estudo transcultural Brasil, Portugal e Espanha. Anais XXIII Congresso Brasileiro de Fonoaudiologia e IX Internacional de Fonoaudiologia, 14 a 16 de Outubro de 2015.Google Scholar
  130. Rossi, N. F., & Giacheti, C. M. (2017). Association between speech–language, general cognitive functioning and behaviour problems in individuals with Williams syndrome. Journal of Intellectual Disability Research, 61(7), 707–718.PubMedCrossRefGoogle Scholar
  131. Rossi, N. F., Moretti-Ferreira, D., & Giacheti, C. M. (2007). Perfil comunicativo de indivíduos com a síndrome de Williams-Beuren. Revista da Sociedade Brasileira de Fonoaudiologia, 1–9.Google Scholar
  132. Rossi, N. F., Sampaio, A., Gonçalves, Ó. F., & Giacheti, C. M. (2011). Analysis of speech fluency in Williams syndrome. Research in Developmental Disabilities, 32(6), 2957–2962.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Royston, R., Oliver, C., Moss, J., Adams, D., Berg, K., Burbidge, C., … Waite, J. (2018). Brief report: Repetitive behaviour profiles in williams syndrome: Cross syndrome comparisons with Prader–Willi and Down syndromes. Journal of Autism and Developmental Disorders, 48(1), 326–331.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Rupela, V., Velleman, S. L., & Andrianopoulos, M. V. (2016). Motor speech skills in children with Down syndrome: A descriptive study. International Journal of Speech-Language Pathology, 18(5), 483–492.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Shriberg, L. D., Strand, E. A., & Mabie, H. L. (2016). Prevalence estimates for three types of motor speech disorders in complex neurodevelopmental disorders (CND). In Eighteenth Biennial Conference on Motor Speech: Motor Speech Disorders & Speech Motor Control, Newport Beach, CA.Google Scholar
  136. Skeide, M. A., & Friederici, A. D. (2016). The ontogeny of the cortical language network. Nature Reviews Neuroscience, 17(5), 323.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Smith, A., & Weber, C. (2016). Childhood Stuttering–Where are we and Where are we going? Seminars in Speech and Language, 37(4), 291.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Spinelli, M., Rocha, A. C. D. O., Giacheti, C. M., & Richieri-Costa, A. (1995). Word-finding difficulties, verbal paraphasias, and verbal dyspraxia in ten individuals with fragile x syndrome. American Journal of Medical Genetics, 60(1), 39–43.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Strømme, P., Bjømstad, P. G., & Ramstad, K. (2002). Prevalence estimation of Williams syndrome. Journal of Child Neurology, 17(4), 269–271.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Tomasello, M. (2010). Origins of human communication. Cambridge, MA: MIT Press.Google Scholar
  141. Udwin, O., & Yule, W. (1990). Expressive language of children with Williams syndrome. American Journal of Medical Genetics, 37(S6), 108–114.CrossRefGoogle Scholar
  142. Verendeev, A., & Sherwood, C. C. (2017). Human brain evolution. Current Opinion in Behavioral Sciences, 16, 41–45.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Vicari, S., Bellucci, S., & Carlesimo, G. A. (2006). Evidence from two genetic syndromes for the independence of spatial and visual working memory. Developmental Medicine and Child Neurology, 48(2), 126–131.PubMedCrossRefGoogle Scholar
  144. Volterra, V., Caselli, M. C., Capirci, O., Tonucci, F., & Vicari, S. (2003). Early linguistic abilities of Italian children with Williams syndrome. Developmental Neuropsychology, 23(1-2), 33–58.PubMedCrossRefGoogle Scholar
  145. Whitehouse, C. M., & Lewis, M. H. (2015). Repetitive behavior in neurodevelopmental disorders: Clinical and translational findings. The Behavior Analyst, 38(2), 163–178.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Yang, Y., Jia, F., Fox, P. T., Siok, W. T., & Tan, L. H. (2019). Abnormal neural response to phonological working memory demands in persistent developmental stuttering. Human Brain Mapping, 40(1), 214–225.PubMedCrossRefGoogle Scholar
  147. Yeger, H. (2015). The evolution of human communication. Journal of cell communication and signaling, 9(3), 289–290.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Yeh, Z. T., Tsai, M. C., Tsai, M. D., Lo, C. Y., & Wang, K. C. (2017). The relationship between theory of mind and the executive functions: Evidence from patients with frontal lobe damage. Applied Neuropsychology: Adult, 24(4), 342–349.CrossRefGoogle Scholar
  149. Zhang, Y. E., Landback, P., Vibranovski, M. D., & Long, M. (2011). Accelerated recruitment of new brain development genes into the human genome. PLoS Biology, 9(10), e1001179.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Zingerevich, C., Greiss-Hess, L., Lemons-Chitwood, K., Harris, S. W., Hessl, D., Cook, K., & Hagerman, R. J. (2009). Motor abilities of children diagnosed with fragile X syndrome with and without autism. Journal of Intellectual Disability Research, 53(1), 11–18.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Natalia Freitas Rossi
    • 1
  • Célia Maria Giacheti
    • 1
  1. 1.Speech, Language and Hearing SciencesSao Paulo State University, (UNESP)MariliaBrazil

Personalised recommendations