Blood Failure: Pathophysiology and Diagnosis

  • Nathan J. White
  • Kevin R. WardEmail author


Hemorrhage is the leading cause of preventable death in both civilian and military environments. It is now known that impaired coagulation in the setting of traumatic shock that increases hemorrhage has been identified in 20–30% of trauma victims shortly after injury and when present can increase the incidence of organ failure, intensive care utilization, and even death. New insights into the field of traumatic shock have led to a recent and growing concept that blood and its endothelial interface should be considered an organ system and that when injured sufficiently can fail. This chapter will define the critical elements and pathophysiology of trauma-induced hemorrhagic blood failure including the physiology of shock and oxygen debt, reperfusion injury, the role of the endothelium, and resulting hemostatic dysfunction including its diagnosis. This framework will assist in understanding the process by which blood failure develops and also offer a base from which to work to develop new prevention, diagnostic, and treatment strategies for blood failure as they apply to the challenges of remote damage control resuscitation and other settings.


Blood failure Shock Oxygen debt Oxygen deficit Microcirculation Endothelium Trauma Trauma-induced coagulopathy Hemorrhage Traumatic shock Thromboelastography Viscoelastic Hemostatic assay Platelet dysfunction Lactate Hemostasis Remote damage control resuscitation Hemostatic dysfunction Damage control resuscitation 


  1. 1.
    Murray CJ, Lopez AD. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet. 1997;349(9061):1269–76.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Shackford SR, et al. Epidemiology and pathology of traumatic deaths occurring at a Level I Trauma Center in a regionalized system: the importance of secondary brain injury. J Trauma. 1989;29(10):1392–7.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Eastridge BJ, et al. Death on the battlefield (2001–2011): implications for the future of combat casualty care. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S431–7.CrossRefGoogle Scholar
  4. 4.
    Brohi K, et al. Acute traumatic coagulopathy. J Trauma Inj Infect Crit Care. 2003;54(6):1127–30.CrossRefGoogle Scholar
  5. 5.
    Hess JR, et al. The coagulopathy of trauma: a review of mechanisms. J Trauma Inj Infect Crit Care. 2008;65(4):748–54.CrossRefGoogle Scholar
  6. 6.
    Holcomb JB. Damage control resuscitation. J Trauma. 2007;62(6 Suppl):S36–7.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Holcomb JB, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313(5):471–82.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bjerkvig CK, et al. Blood failure” time to view blood as an organ: how oxygen debt contributes to blood failure and its implications for remote damage control resuscitation. Transfusion. 2016;56(Suppl 2):S182–9.CrossRefGoogle Scholar
  9. 9.
    White NJ, et al. Hemorrhagic blood failure: oxygen debt, coagulopathy, and endothelial damage. J Trauma Acute Care Surg. 2017;82(6S Suppl 1):S41–9.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Brohi K, et al. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg. 2007;245(5):812–8.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Maegele M, et al. Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury. 2007;38(3):298–304.PubMedCrossRefGoogle Scholar
  12. 12.
    Manikis P, et al. Correlation of serial blood lactate levels to organ failure and mortality after trauma. Am J Emerg Med. 1995;13(6):619–22.PubMedCrossRefGoogle Scholar
  13. 13.
    Nast-Kolb D, et al. Indicators of the posttraumatic inflammatory response correlate with organ failure in patients with multiple injuries. J Trauma. 1997;42(3):446–54; discussion 454–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Davis JW, et al. Admission base deficit predicts transfusion requirements and risk of complications. J Trauma. 1996;41(5):769–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Rutherford EJ, et al. Base deficit stratifies mortality and determines therapy. J Trauma. 1992;33(3):417–23.PubMedCrossRefGoogle Scholar
  16. 16.
    Morrison JJ, et al. Military application of tranexamic acid in trauma emergency resuscitation (MATTERs) study. Arch Surg. 2012;147(2):113–9.CrossRefGoogle Scholar
  17. 17.
    Zhao Z, et al. Cardiolipin-mediated procoagulant activity of mitochondria contributes to traumatic brain injury-associated coagulopathy in mice. Blood. 2016;127(22):2763–72.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    White NJ, et al. Early hemostatic responses to trauma identified with hierarchical clustering analysis. J Thromb Haemost. 2015;13(6):978–88.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Barbee RW, Reynolds PS, Ward KR. Assessing shock resuscitation strategies by oxygen debt repayment. Shock. 2010;33(2):113–22.CrossRefGoogle Scholar
  20. 20.
    Shoemaker WC, Appel PL, Kram HB. Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med. 1988;16(11):1117–20.CrossRefGoogle Scholar
  21. 21.
    Rixen D, et al. A pig hemorrhagic shock model: oxygen debt and metabolic acidemia as indicators of severity. Shock. 2001;16(3):239–44.PubMedCrossRefGoogle Scholar
  22. 22.
    Rixen D, Siegel JH. Bench-to-bedside review: oxygen debt and its metabolic correlates as quantifiers of the severity of hemorrhagic and post-traumatic shock. Crit Care. 2005;9(5):441–53.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Dunham CM, et al. Oxygen debt and metabolic acidemia as quantitative predictors of mortality and the severity of the ischemic insult in hemorrhagic-shock. Crit Care Med. 1991;19(2):231–43.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Siegel JH, et al. Oxygen debt criteria quantify the effectiveness of early partial resuscitation after hypovolemic hemorrhagic shock. J Trauma Inj Infect Crit Care. 2003;54(5):862–80.CrossRefGoogle Scholar
  25. 25.
    Chaudry IH, et al. Alterations in electron transport and cellular metabolism with shock and trauma. Prog Clin Biol Res. 1983;111:67–88.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Szabo C, Modis K. Pathophysiological roles of peroxynitrite in circulatory shock. Shock. 2010;34(Suppl 1):4–14.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Weidinger A, Kozlov AV. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomol Ther. 2015;5(2):472–84. Scholar
  28. 28.
    Valko M, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Chaudry IH, Clemens MG, Baue AE. Alterations in cell function with ischemia and shock and their correction. Arch Surg. 1981;116(10):1309–17.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Rady MY, et al. A comparison of the effects of skeletal muscle injury and somatic afferent nerve stimulation on the response to hemorrhage in anesthetized pigs. J Trauma. 1993;35(5):756–61.PubMedCrossRefGoogle Scholar
  31. 31.
    James JH, et al. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet. 1999;354(9177):505–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Siegel JH. Physiologic, metabolic and mediator responses in posttrauma ARDS and sepsis: is oxygen debt a critical initiating factor? J Physiol Pharmacol. 1997;48(4):559–85.PubMedGoogle Scholar
  33. 33.
    Ward KR. The microcirculation: linking trauma and coagulopathy. Transfusion. 2013;53(Suppl 1):38S–47S.PubMedCrossRefGoogle Scholar
  34. 34.
    Guyton AC. Textbook of medical physiology. 11th ed. Philadelphia: Elsevier Saunders; 2011.Google Scholar
  35. 35.
    Ward KR, Ivatury RR, Barbee RW. Endpoints of resuscitation for the victim of trauma. J Intensive Care Med. 2001;16(2):55–75.CrossRefGoogle Scholar
  36. 36.
    Aird WC. Endothelium as an organ system. Crit Care Med. 2004;32(5 Suppl):S271–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Trzeciak S, et al. Resuscitating the microcirculation in sepsis: the central role of nitric oxide, emerging concepts for novel therapies, and challenges for clinical trials. Acad Emerg Med. 2008;15(5):399–413.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Aird WC. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res. 2007;100(2):174–90.PubMedCrossRefGoogle Scholar
  39. 39.
    Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 2007;100(2):158–73.PubMedCrossRefGoogle Scholar
  40. 40.
    Aird WC. Endothelium in health and disease. Pharmacol Rep. 2008;60(1):139–43.PubMedGoogle Scholar
  41. 41.
    Aird WC. Endothelium and haemostasis. Hamostaseologie. 2015;35(1):11–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Holcomb JB, Pati S. Optimal trauma resuscitation with plasma as the primary resuscitative fluid: the surgeon’s perspective. Hematology Am Soc Hematol Educ Program. 2013;2013:656–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Watson JJ, Pati S, Schreiber MA. Plasma transfusion: history, current realities, and novel improvements. Shock. 2016;46(5):468–79.PubMedCrossRefGoogle Scholar
  44. 44.
    Buchele GL, Ospina-Tascon GA, De Backer D. How microcirculation data have changed my clinical practice. Curr Opin Crit Care. 2007;13(3):324–31.PubMedCrossRefGoogle Scholar
  45. 45.
    Spronk HM, Borissoff JI, ten Cate H. New insights into modulation of thrombin formation. Curr Atheroscler Rep. 2013;15(11):363.PubMedCrossRefGoogle Scholar
  46. 46.
    Esmon CT. Inflammation and the activated protein C anticoagulant pathway. Semin Thromb Hemost. 2006;32(Suppl 1):49–60.PubMedCrossRefGoogle Scholar
  47. 47.
    Thurston G, et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med. 2000;6(4):460–3.PubMedCrossRefGoogle Scholar
  48. 48.
    Tuma M, et al. Trauma and endothelial glycocalyx: the microcirculation helmet? Shock. 2016;46(4):352–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Crimi E, et al. Effects of intracellular acidosis on endothelial function: an overview. J Crit Care. 2012;27(2):108–18.PubMedCrossRefGoogle Scholar
  50. 50.
    Haywood-Watson RJ, et al. Modulation of syndecan-1 shedding after hemorrhagic shock and resuscitation. PLoS One. 2011;6(8):e23530.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kozar RA, Pati S. Syndecan-1 restitution by plasma after hemorrhagic shock. J Trauma Acute Care Surg. 2015;78(6):S83–6 Suppl 1.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ostrowski SR, Johansson PI. Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute Care Surg. 2012;73(1):60–6.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Johansson PI, et al. Traumatic endotheliopathy: a prospective observational study of 424 severely injured patients. Ann Surg. 2017;265(3):597–603.PubMedCrossRefGoogle Scholar
  54. 54.
    Johansson PI, et al. High sCD40L levels early after trauma are associated with enhanced shock, sympathoadrenal activation, tissue and endothelial damage, coagulopathy and mortality. J Thromb Haemost. 2012;10(2):207–16.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Itagaki K, et al. Mitochondrial DNA released by trauma induces neutrophil extracellular traps. PLoS One. 2015;10(3):e0120549.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Barr JD, et al. Red blood cells mediate the onset of thrombosis in the ferric chloride murine model. Blood. 2013;121(18):3733–41.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Weigandt KM, et al. Fibrin clot structure and mechanics associated with specific oxidation of methionine residues in fibrinogen. Biophys J. 2012;103(11):2399–407.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    White NJ, et al. Post-translational oxidative modification of fibrinogen is associated with coagulopathy after traumatic injury. Free Radic Biol Med. 2016;96:181–9.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    van Helmond N, et al. Coagulation changes during lower body negative pressure and blood loss in humans. Am J Physiol Heart Circ Physiol. 2015;309(9):H1591–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Cohen MJ, et al. Critical role of activated protein C in early coagulopathy and later organ failure, infection and death in trauma patients. Ann Surg. 2012;255(2):379–85.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Campbell JE, Meledeo MA, Cap AP. Comparative response of platelet fV and plasma fV to activated protein C and relevance to a model of acute traumatic coagulopathy. PLoS One. 2014;9(6):e99181.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Chandler WL. Procoagulant activity in trauma patients. Am J Clin Pathol. 2010;134(1):90–6.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Dunbar NM, Chandler WL. Thrombin generation in trauma patients. Transfusion. 2009;49(12):2652–60.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Cardenas JC, et al. Measuring thrombin generation as a tool for predicting hemostatic potential and transfusion requirements following trauma. J Trauma Acute Care Surg. 2014;77(6):839–45.PubMedCrossRefGoogle Scholar
  65. 65.
    Hayakawa M, et al. Disseminated intravascular coagulation at an early phase of trauma is associated with consumption coagulopathy and excessive fibrinolysis both by plasmin and neutrophil elastase. Surgery. 2011;149(2):221–30.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Kaplan AP, Ghebrehiwet B. The plasma bradykinin-forming pathways and its interrelationships with complement. Mol Immunol. 2010;47(13):2161–9.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Marcos-Contreras OA, et al. Hyperfibrinolysis increases blood-brain barrier permeability by a plasmin- and bradykinin-dependent mechanism. Blood. 2016;128(20):2423–34.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Omar MN, Mann KG. Inactivation of factor Va by plasmin. J Biol Chem. 1987;262(20):9750–5.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Chapman MP, et al. Overwhelming tPA release, not PAI-1 degradation, is responsible for hyperfibrinolysis in severely injured trauma patients. J Trauma Acute Care Surg. 2016;80(1):16–23; discussion 23–5.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Cardenas JC, et al. Elevated tissue plasminogen activator and reduced plasminogen activator inhibitor promote hyperfibrinolysis in trauma patients. Shock. 2014;41(6):514–21.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Raza I, et al. The incidence and magnitude of fibrinolytic activation in trauma patients. J Thromb Haemost. 2013;11(2):307–14.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Moore HB, et al. Acute fibrinolysis shutdown after injury occurs frequently and increases mortality: a multicenter evaluation of 2,540 severely injured patients. J Am Coll Surg. 2016;222(4):347–55.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    CRASH-2 Trial Collaborators. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.CrossRefGoogle Scholar
  74. 74.
    Cap AP. Plasmin: a driver of hemovascular dysfunction. Blood. 2016;128(20):2375–6.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Kutcher ME, et al. Characterization of platelet dysfunction after trauma. J Trauma Acute Care Surg. 2012;73(1):13–9.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Wohlauer MV, et al. Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma. J Am Coll Surg. 2012;214(5):739–46.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Jacoby RC, et al. Platelet activation and function after trauma. J Trauma. 2001;51(4):639–47.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    White NJ, et al. Clot formation is associated with fibrinogen and platelet forces in a cohort of severely injured Emergency Department trauma patients. Shock. 2015;44(Suppl 1):39–44.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Guyette F, et al. Prehospital serum lactate as a predictor of outcomes in trauma patients: a retrospective observational study. J Trauma. 2011;70(4):782–6.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Guyette FX, et al. A comparison of prehospital lactate and systolic blood pressure for predicting the need for resuscitative care in trauma transported by ground. J Trauma Acute Care Surg. 2015;78(3):600–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Tobias AZ, et al. Pre-resuscitation lactate and hospital mortality in prehospital patients. Prehosp Emerg Care. 2014;18(3):321–7.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Abramson D, et al. Lactate clearance and survival following injury. J Trauma. 1993;35(4):584–8; discussion 588–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Shepherd JT. Circulation to skeletal muscle. In: Shepherd JT, Abboud FM, Geiger SR, editors. Handbook of physiology. Bethesda: American Physiology Society; 1983. p. 319–70.Google Scholar
  84. 84.
    Ward KR, et al. Near infrared spectroscopy for evaluation of the trauma patient: a technology review. Resuscitation. 2006;68(1):27–44.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Cohn SM, et al. Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation. J Trauma Inj Infect Crit Care. 2007;62(1):44–54.CrossRefGoogle Scholar
  86. 86.
    Crookes BA, et al. Can near-infrared spectroscopy identify the severity of shock in trauma patients? J Trauma. 2005;58(4):806–13; discussion 813–6.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Tiba MH, et al. Tissue oxygenation monitoring using resonance Raman spectroscopy during hemorrhage. J Trauma Acute Care Surg. 2014;76(2):402–8.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    White NJ, et al. Systemic central venous oxygen saturation is associated with clot strength during traumatic hemorrhagic shock: a preclinical observational model. Scand J Trauma Resusc Emerg Med. 2010;18:64.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Johnson MC, et al. Compensatory reserve index: performance of a novel monitoring technology to identify the bleeding trauma patient. Shock. 2018;49(3):295–300.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Moulton SL, et al. Running on empty? The compensatory reserve index. J Trauma Acute Care Surg. 2013;75(6):1053–9.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Johnson MC, et al. Comparison of compensatory reserve and arterial lactate as markers of shock and resuscitation. J Trauma Acute Care Surg. 2017;83(4):603–8.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Frith D, Davenport R, Brohi K. Acute traumatic coagulopathy. Curr Opin Anaesthesiol. 2012;25(2):229–34.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    McCully SP, et al. The international normalized ratio overestimates coagulopathy in stable trauma and surgical patients. J Trauma Acute Care Surg. 2013;75(6):947–53.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Peltan ID, et al. An international normalized ratio-based definition of acute traumatic coagulopathy is associated with mortality, venous thromboembolism, and multiple organ failure after injury. Crit Care Med. 2015;43(7):1429–38.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Rizoli SB, et al. Clotting factor deficiency in early trauma-associated coagulopathy. J Trauma. 2011;71(5 Suppl 1):S427–34.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Rourke C, et al. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost. 2012;10(7):1342–51.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Clauss V. Gerinnungsphysiologische Schnell methode zur Bestimmung des Fibrinogens. Acta Haematol. 1957;17:237–46.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Hiippala ST, Myllyla GJ, Vahtera EM. Hemostatic factors and replacement of major blood loss with plasma-poor red cell concentrates. Anesth Analg. 1995;81(2):360–5.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Rossaint R, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care. 2016;20:100.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Hagemo JS, et al. Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: a multicentre observational study. Crit Care. 2014;18(2):R52.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Schlimp CJ, et al. Estimation of plasma fibrinogen levels based on hemoglobin, base excess and Injury Severity Score upon emergency room admission. Crit Care. 2013;17(4):R137.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Lippi G, et al. D-dimer testing for suspected venous thromboembolism in the emergency department. Consensus document of AcEMC, CISMEL, SIBioC, and SIMeL. Clin Chem Lab Med. 2014;52(5):621–8.PubMedGoogle Scholar
  103. 103.
    Cardenas JC, et al. Teg lysis shutdown represents coagulopathy in bleeding trauma patients: analysis of the PROPPR cohort. Shock. 2019;51:273–83.PubMedCrossRefGoogle Scholar
  104. 104.
    Gall LS, et al. The S100A10 pathway mediates an occult hyperfibrinolytic subtype in trauma patients. Ann Surg. 2019;269:1184–91.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Spann AP, et al. The effect of hematocrit on platelet adhesion: experiments and simulations. Biophys J. 2016;111(3):577–88.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Hellem AJ, Borchgrevink CF, Ames SB. The role of red cells in haemostasis: the relation between haematocrit, bleeding time and platelet adhesiveness. Br J Haematol. 1961;7:42–50.PubMedCrossRefGoogle Scholar
  107. 107.
    Hartert H, Schaeder J. The physical and biological constants of thrombelastography. Biorheology. 1962;1:31–9.CrossRefGoogle Scholar
  108. 108.
    Sankarankutty A, et al. TEG(R) and ROTEM(R) in trauma: similar test but different results? World J Emerg Surg. 2012;7(Suppl 1):S3.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Ferrante EA, et al. A novel device for the evaluation of hemostatic function in critical care settings. Anesth Analg. 2016;123(6):1372–9.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Meledeo MA, et al. Functional stability of the TEG 6s hemostasis analyzer under stress. J Trauma Acute Care Surg. 2018;84(6S Suppl 1):S83–8.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Davenport R, et al. Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med. 2011;39(12):2652–8.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Schochl H, et al. Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma. 2009;67(1):125–31.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Chapman MP, et al. The “death diamond”: rapid thrombelastography identifies lethal hyperfibrinolysis. J Trauma Acute Care Surg. 2015;79(6):925–9.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Holcomb JB, et al. Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department: experience with 1974 consecutive trauma patients. Ann Surg. 2012;256(3):476–86.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Gonzalez E, et al. Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: a pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Ann Surg. 2016;263(6):1051–9.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Schochl H, Schlimp CJ, Voelckel W. Potential value of pharmacological protocols in trauma. Curr Opin Anaesthesiol. 2013;26(2):221–9.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Gonzalez E, Moore EE, Moore HB. Management of trauma-induced coagulopathy with thrombelastography. Crit Care Clin. 2017;33(1):119–34.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Da Luz LT, et al. Effect of thromboelastography (TEG(R)) and rotational thromboelastometry (ROTEM(R)) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: descriptive systematic review. Crit Care. 2014;18(5):518.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Hunt H, et al. Thromboelastography (TEG) and rotational thromboelastometry (ROTEM) for trauma induced coagulopathy in adult trauma patients with bleeding. Cochrane Database Syst Rev. 2015;(2):CD010438.Google Scholar
  120. 120.
    Best, B. Mechanisms of aging. Available from:
  121. 121.
    Johansson PI, Stensballe J, Ostrowski SR. Shock induced endotheliopathy (SHINE) in acute critical illness – a unifying pathophysiologic mechanism. Crit Care. 2017;21(1):25.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Hochleitner G, et al. Revisiting Hartert’s 1962 calculation of the physical constants of thrombelastography. Clin Appl Thromb Hemost. 2017;23(3):201–10. Scholar
  123. 123.
    Tanaka KA, et al. Rotational thromboelastometry (ROTEM)-based coagulation management in cardiac surgery and major trauma. J Cardiothorac Vasc Anesth. 2012;26(6):1083–93.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Emergency MedicineUniversity of WashingtonSeattleUSA
  2. 2.Departments of Emergency Medicine and Biomedical EngineeringMichigan Center for Integrative Research in Critical Care, University of MichiganAnn ArborUSA

Personalised recommendations