Stationarity, VARMA, and ARIMA Models

  • Víctor Gómez
Part of the Statistics and Computing book series (SCO)


Statistically speaking, a time seriesy is a finite set of values {y1…, yn} taken by certain k-dimensional random vectors {Y1…, Yn}. The proper framework in which to study time series is that of stochastic processes.


  1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.MathSciNetCrossRefGoogle Scholar
  2. Barlett, M. S. (1955). Stochastic processes. Cambridge: Cambridge University Press.Google Scholar
  3. Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control (revised ed.). San Francisco: Holden-Day.Google Scholar
  4. Box, G. E. P., & Tiao, G. C. (1975). Intervention analysis with applications to economic and environmental problems. Journal of the American Statistical Association, 70, 70–79.MathSciNetCrossRefGoogle Scholar
  5. De Livera, A. M., Hyndman, R. J., & Snyder, R. D. (2011). Forecasting time series with complex seasonal patterns using exponential smoothing. Journal of the American Statistical Association,106, 1513–1527.MathSciNetCrossRefGoogle Scholar
  6. Gómez, V. (2013). A strongly consistent criterion to decide between I(1) and I(0) processes based on different convergence rates. Communications in Statistics-Simulation and Computation,42, 1848–1864.MathSciNetzbMATHGoogle Scholar
  7. Gómez, V. (2016). Multivariate time series models with linear state space structure. New York: Springer.zbMATHGoogle Scholar
  8. Gómez, V., & Maravall, A. (1994). Estimation, prediction, and interpolation for nonstationary series with the Kalman filter. Journal of the American Statistical Association,89, 611–624.MathSciNetzbMATHGoogle Scholar
  9. Gómez, V., & Maravall, A. (2001). Automatic modeling methods for univariate time series. In D. Peña, G. C. Tiao, & R. S. Tsay (Eds.), A course in time series analysis (pp. 171–201). New York: Wiley.Google Scholar
  10. Gómez, V., Maravall, A., & Peña, D. (1999). Missing observations in arima models: Skipping approach versus additive outlier approach. Journal of Econometrics,88, 341–363.MathSciNetCrossRefGoogle Scholar
  11. Hannan, E. J., & Rissanen, J.(1982). Recursive Estimation of Mixed Autoregressive–Moving Average Order. Biometrika,69(), 81–94.Google Scholar
  12. Hillmer, S. C., Bell, W. R., & Tiao, G. C. (1983). Modeling considerations in the seasonal adjustment of economic time series. In A. Zellner (Ed.), Proceedings of the Conference on Applied Time Series Analysis of Economic Data, (pp. 74–100). U.S. Department of Commerce, Bureau of the Census.Google Scholar
  13. Kitagawa, G., & Gersch, W. (1996). Smoothness priors analysis of time series. New York: Springer.CrossRefGoogle Scholar
  14. Lütkepohl, H. (2005). New introduction to multiple time series analysis. Berlin: Springer.CrossRefGoogle Scholar
  15. Nsiri, S., & Roy, R. (1996). Identification of refined ARMA echelon form models for multivariate time series. Journal of Multivariate Analysis,56, 207–231.MathSciNetCrossRefGoogle Scholar
  16. Reinsel, G. C. (1997). Elements of Multivariate Time Series Analysis. New York: Springer.CrossRefGoogle Scholar
  17. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics,6, 461–464.MathSciNetCrossRefGoogle Scholar
  18. Tiao, G. C., & Box, G. E. P. (1981). Modeling multiple time series with applications. Journal of the American Statistical Association,76, 802–816.MathSciNetzbMATHGoogle Scholar
  19. Tsay, R. S. (2014). Mutivariate time series analysis with r and financial applications. New York: Wiley.Google Scholar
  20. Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions and tests of aggregation bias. Journal of the American Statistical Association,57, 348–368.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Víctor Gómez
    • 1
  1. 1.General Directorate of BudgetsMinistry of Finance and Public AdministrationsMadridSpain

Personalised recommendations