Advertisement

Centenarians pp 135-148 | Cite as

Lifestyle Choices, Psychological Stress and Their Impact on Ageing: The Role of Telomeres

  • Sergio DavinelliEmail author
  • Immaculata De Vivo
Chapter

Abstract

Telomeres are the heterochromatic repeat regions at the ends of eukaryotic chromosomes that maintain the genomic integrity of a cell. Telomere shortening with increasing age is a part of the normal ageing process. However, factors such as inflammation, oxidative stress and other genotoxic stressors may also increase the rate of telomere attrition, leading to telomere dysfunction-mediated cellular senescence and accelerating the ageing process. Once telomeres shorten to a critical length, the cell encounters a proliferation block where it either ceases to divide or undergoes programmed cell death. Thus, telomere length is considered a biological clock that limits the lifespan of a cell and an organism: people with short telomeres often have reduced lifespan. Certain lifestyle factors such as smoking, body mass index and psychological stress have been found to correlate with accelerated telomere shortening, likely because they increase DNA damage through oxidative stress. Recently, studies have identified lifestyle factors that can potentially protect telomeres. For example, people who lead a healthy lifestyle by increasing their physical activity, practising meditation, adhering to the Mediterranean diet and using multivitamins have been shown to have longer telomeres than those who do not adhere to such lifestyle changes. This chapter highlights the influence of lifestyle factors on key biological mechanisms associated with telomere maintenance.

Keywords

Telomere Ageing Lifestyle Oxidative stress Inflammation 

References

  1. 1.
    Stewart SA, Weinberg RA. Telomeres: cancer to human aging. Annu Rev Cell Dev Biol. 2006;22:531–57.PubMedCrossRefGoogle Scholar
  2. 2.
    McElligott R, Wellinger RJ. The terminal DNA structure of mammalian chromosomes. EMBO J. 1997;16(12):3705–14.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Huffman KE, Levene SD, Tesmer VM, Shay JW, Wright WE. Telomere shortening is proportional to the size of the G-rich telomeric 3′-overhang. J Biol Chem. 2000;275(26):19719–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet. 2008;42:301–34.PubMedCrossRefGoogle Scholar
  5. 5.
    Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345(6274):458–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.PubMedCrossRefGoogle Scholar
  7. 7.
    Xin H, Liu D, Songyang Z. The telosome/shelterin complex and its functions. Genome Biol. 2008;9(9):232.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Barnes RP, Fouquerel E, Opresko PL. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev. 2019;177:37–45. pii: S0047-6374(18)30052-6.PubMedCrossRefGoogle Scholar
  9. 9.
    Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014;2:4172.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Sahin E, Depinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature. 2010;464(7288):520–8.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Butt HZ, Atturu G, London NJ, Sayers RD, Bown MJ. Telomere length dynamics in vascular disease: a review. Eur J Vasc Endovasc Surg. 2010;40(1):17–26.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, et al. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A. 2004;101(49):17312–5.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Simon NM, Smoller JW, McNamara KL, Maser RS, Zalta AK, Pollack MH, et al. Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol Psychiatry. 2006;60(5):432–5.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Cherkas LF, Hunkin JL, Kato BS, Richards JB, Gardner JP, Surdulescu GL, et al. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 2008;168(2):154–8.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Mirabello L, Huang WY, Wong JY, Chatterjee N, Reding D, Crawford ED, et al. The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer. Aging Cell. 2009;8(4):405–13.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Starkweather AR, Alhaeeri AA, Montpetit A, Brumelle J, Filler K, Montpetit M, et al. An integrative review of factors associated with telomere length and implications for biobehavioral research. Nurs Res. 2014;63(1):36–50.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ji LL, Gomez-Cabrera MC, Vina J. Exercise and hormesis: activation of cellular antioxidant signaling pathway. Ann N Y Acad Sci. 2006;1067:425–35.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol. 2005;45(10):1563–9.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ludlow AT, Zimmerman JB, Witkowski S, Hearn JW, Hatfield BD, Roth SM. Relationship between physical activity level, telomere length, and telomerase activity. Med Sci Sports Exerc. 2008;40(10):1764–71.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Woo J, Tang N, Leung J. No association between physical activity and telomere length in an elderly Chinese population 65 years and older. Arch Intern Med. 2008;168(19):2163–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhu H, Wang X, Gutin B, Davis CL, Keeton D, Thomas J, et al. Leukocyte telomere length in healthy Caucasian and African-American adolescents: relationships with race, sex, adiposity, adipokines, and physical activity. J Pediatr. 2011;158(2):215–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Hu FB, Li TY, Colditz GA, Willett WC, Manson JE. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA. 2003;289(14):1785–91.PubMedCrossRefGoogle Scholar
  23. 23.
    Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Du M, Prescott J, Kraft P, Han J, Giovannucci E, Hankinson SE, et al. Physical activity, sedentary behavior, and leukocyte telomere length in women. Am J Epidemiol. 2012;175(5):414–22.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    US Department of Health and Human Services. Physical activity guidelines for Americans: be active, healthy, and happy! Washington, DC: US Department of Health and Human Services; 2008.Google Scholar
  26. 26.
    McTiernan A. Mechanisms linking physical activity with cancer. Nat Rev Cancer. 2008;8(3):205–11.PubMedCrossRefGoogle Scholar
  27. 27.
    Keaney JF Jr, Larson MG, Vasan RS, Wilson PW, Lipinska I, Corey D, et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham study. Arterioscler Thromb Vasc Biol. 2003;23(3):434–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Pou KM, Massaro JM, Hoffmann U, Vasan RS, Maurovich-Horvat P, Larson MG, et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham heart study. Circulation. 2007;116(11):1234–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Covas MI, Elosua R, Fitó M, Alcántara M, Coca L, Marrugat J. Relationship between physical activity and oxidative stress biomarkers in women. Med Sci Sports Exerc. 2002;34(5):814–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Poulsen HE, Loft S, Vistisen K. Extreme exercise and oxidative DNA modification. J Sports Sci. 1996;14(4):343–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243–76.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med. 2008;44(2):153–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Collins M, Renault V, Grobler LA, St Clair Gibson A, Lambert MI, et al. Athletes with exercise-associated fatigue have abnormally short muscle DNA telomeres. Med Sci Sports Exerc. 2003;35(9):1524–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Magi F, Dimauro I, Margheritini F, Duranti G, Mercatelli N, Fantini C, et al. Telomere length is independently associated with age, oxidative biomarkers, and sport training in skeletal muscle of healthy adult males. Free Radic Res. 2018;52(6):639–47.PubMedCrossRefGoogle Scholar
  35. 35.
    Rae DE, Vignaud A, Butler-Browne GS, Thornell LE, Sinclair-Smith C, Derman EW, et al. Skeletal muscle telomere length in healthy, experienced, endurance runners. Eur J Appl Physiol. 2010;109(2):323–30.PubMedCrossRefGoogle Scholar
  36. 36.
    Al-Attas OS, Al-Daghri NM, Alokail MS, Alfadda A, Bamakhramah A, Sabico S, et al. Adiposity and insulin resistance correlate with telomere length in middle-aged Arabs: the influence of circulating adiponectin. Eur J Endocrinol. 2010;163(4):601–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol. 2004;24(5):816–23.PubMedCrossRefGoogle Scholar
  38. 38.
    Demissie S, Levy D, Benjamin EJ, Cupples LA, Gardner JP, Herbert A, et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham heart study. Aging Cell. 2006;5(4):325–30.PubMedCrossRefGoogle Scholar
  39. 39.
    Gardner JP, Li S, Srinivasan SR, Chen W, Kimura M, Lu X, et al. Rise in insulin resistance is associated with escalated telomere attrition. Circulation. 2005;111(17):2171–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Puterman E, Lin J, Blackburn E, O’Donovan A, Adler N, Epel E. The power of exercise: buffering the effect of chronic stress on telomere length. PLoS One. 2010;5(5):e10837.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Rafie N, Golpour Hamedani S, Barak F, Safavi SM, Miraghajani M. Dietary patterns, food groups and telomere length: a systematic review of current studies. Eur J Clin Nutr. 2017;71(2):151–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Xu Q, Parks CG, DeRoo LA, Cawthon RM, Sandler DP, Chen H. Multivitamin use and telomere length in women. Am J Clin Nutr. 2009;89(6):1857–63.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kiecolt-Glaser JK, Epel ES, Belury MA, Andridge R, Lin J, Glaser R, et al. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial. Brain Behav Immun. 2013;28:16–24.PubMedCrossRefGoogle Scholar
  44. 44.
    Davinelli S, Maes M, Corbi G, Zarrelli A, Willcox DC, Scapagnini G. Dietary phytochemicals and neuro-inflammaging: from mechanistic insights to translational challenges. Immun Ageing. 2016;13:16.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Davinelli S, Scapagnini G. Polyphenols: a promising nutritional approach to prevent or reduce the progression of prehypertension. High Blood Press Cardiovasc Prev. 2016;23(3):197–202.PubMedCrossRefGoogle Scholar
  46. 46.
    Chan R, Woo J, Suen E, Leung J, Tang N. Chinese tea consumption is associated with longer telomere length in elderly Chinese men. Br J Nutr. 2010;103(1):107–13.PubMedCrossRefGoogle Scholar
  47. 47.
    da Luz PL, Tanaka L, Brum PC, Dourado PM, Favarato D, Krieger JE, et al. Red wine and equivalent oral pharmacological doses of resveratrol delay vascular aging but do not extend life span in rats. Atherosclerosis. 2012;224(1):136–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Thomas P, Wang YJ, Zhong JH, Kosaraju S, O’Callaghan NJ, Zhou XF, et al. Grape seed polyphenols and curcumin reduce genomic instability events in a transgenic mouse model for Alzheimer’s disease. Mutat Res. 2009;661(1–2):25–34.PubMedCrossRefGoogle Scholar
  49. 49.
    Sen A, Marsche G, Freudenberger P, Schallert M, Toeglhofer AM, Nagl C, et al. Association between higher plasma lutein, zeaxanthin, and vitamin C concentrations and longer telomere length: results of the Austrian stroke prevention study. J Am Geriatr Soc. 2014;62(2):222–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Marcon F, Siniscalchi E, Crebelli R, Saieva C, Sera F, Fortini P, et al. Diet-related telomere shortening and chromosome stability. Mutagenesis. 2012;27(1):49–57.PubMedCrossRefGoogle Scholar
  51. 51.
    Sofi F, Cesari F, Abbate R, Gensini GF, Casini A. Adherence to Mediterranean diet and health status: meta-analysis. BMJ. 2008;337:a1344.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Schwingshackl L, Hoffmann G. Adherence to Mediterranean diet and risk of cancer: a systematic review and meta-analysis of observational studies. Int J Cancer. 2014;135(8):1884–97.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Boccardi V, Esposito A, Rizzo MR, Marfella R, Barbieri M, Paolisso G. Mediterranean diet, telomere maintenance and health status among elderly. PLoS One. 2013;8(4):e62781.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Davinelli S, Trichopoulou A, Corbi G, De Vivo I, Scapagnini G. The potential nutrigeroprotective role of Mediterranean diet and its functional components on telomere length dynamics. Ageing Res Rev. 2019;49:1–10.  https://doi.org/10.1016/j.arr.2018.11.001.PubMedCrossRefGoogle Scholar
  55. 55.
    Crous-Bou M, Fung TT, Prescott J, Julin B, Du M, Sun Q, et al. Mediterranean diet and telomere length in Nurses’ health study: population based cohort study. BMJ. 2014;349:g6674.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wolkowitz OM, Epel ES, Reus VI, Mellon SH. Depression gets old fast: do stress and depression accelerate cell aging? Depress Anxiety. 2010;27(4):327–38.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Epel ES. Psychological and metabolic stress: a recipe for accelerated cellular aging? Hormones (Athens). 2009;8(1):7–22.CrossRefGoogle Scholar
  58. 58.
    Maes M. The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol Lett. 2008;29(3):287–91.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Scapagnini G, Davinelli S, Drago F, De Lorenzo A, Oriani G. Antioxidants as antidepressants: fact or fiction? CNS Drugs. 2012;26(6):477–90.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Brennan AM, Fargnoli JL, Williams CJ, Li T, Willett W, Kawachi I, et al. Phobic anxiety is associated with higher serum concentrations of adipokines and cytokines in women with diabetes. Diabetes Care. 2009;32(5):926–31.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Albert CM, Chae CU, Rexrode KM, Manson JE, Kawachi I. Phobic anxiety and risk of coronary heart disease and sudden cardiac death among women. Circulation. 2005;111(4):480–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Okereke OI, Prescott J, Wong JY, Han J, Rexrode KM, De Vivo I. High phobic anxiety is related to lower leukocyte telomere length in women. PLoS One. 2012;7(7):e40516.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Irie M, Asami S, Nagata S, Ikeda M, Miyata M, Kasai H. Psychosocial factors as a potential trigger of oxidative DNA damage in human leukocytes. Jpn J Cancer Res. 2001;92(3):367–76.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Pitsavos C, Panagiotakos DB, Papageorgiou C, Tsetsekou E, Soldatos C, Stefanadis C. Anxiety in relation to inflammation and coagulation markers, among healthy adults: the ATTICA study. Atherosclerosis. 2006;185(2):320–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Kessler RC, Ruscio AM, Shear K, Wittchen HU. Epidemiology of anxiety disorders. Curr Top Behav Neurosci. 2010;2:21–35.PubMedCrossRefGoogle Scholar
  66. 66.
    Evans GW. A multimethodological analysis of cumulative risk and allostatic load among rural children. Dev Psychol. 2003;39(5):924–33.PubMedCrossRefGoogle Scholar
  67. 67.
    Shonkoff JP, Boyce WT, McEwen BS. Neuroscience, molecular biology, and the childhood roots of health disparities: building a new framework for health promotion and disease prevention. JAMA. 2009;301(21):2252–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Kananen L, Surakka I, Pirkola S, Suvisaari J, Lönnqvist J, Peltonen L, et al. Childhood adversities are associated with shorter telomere length at adult age both in individuals with an anxiety disorder and controls. PLoS One. 2010;5(5):e10826.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Lung FW, Chen NC, Shu BC. Genetic pathway of major depressive disorder in shortening telomeric length. Psychiatr Genet. 2007;17(3):195–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Parks CG, Miller DB, McCanlies EC, Cawthon RM, Andrew ME, DeRoo LA, et al. Telomere length, current perceived stress, and urinary stress hormones in women. Cancer Epidemiol Biomark Prev. 2009;18(2):551–60.CrossRefGoogle Scholar
  71. 71.
    Tyrka AR, Price LH, Kao HT, Porton B, Marsella SA, Carpenter LL. Childhood maltreatment and telomere shortening: preliminary support for an effect of early stress on cellular aging. Biol Psychiatry. 2010;67(6):531–4.PubMedCrossRefGoogle Scholar
  72. 72.
    Cameron N, Demerath EW. Critical periods in human growth and their relationship to diseases of aging. Am J Phys Anthropol. 2002;Suppl 35:159–84.PubMedCrossRefGoogle Scholar
  73. 73.
    Nelson CA 3rd, Zeanah CH, Fox NA, Marshall PJ, Smyke AT, Guthrie D. Cognitive recovery in socially deprived young children: the Bucharest Early Intervention Project. Science. 2007;318(5858):1937–40.PubMedCrossRefGoogle Scholar
  74. 74.
    Pollak SD, Nelson CA, Schlaak MF, Roeber BJ, Wewerka SS, Wiik KL, et al. Neurodevelopmental effects of early deprivation in postinstitutionalized children. Child Dev. 2010;81(1):224–36.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Drury SS, Theall K, Gleason MM, Smyke AT, De Vivo I, Wong JY, et al. Telomere length and early severe social deprivation: linking early adversity and cellular aging. Mol Psychiatry. 2012;17(7):719–27.PubMedCrossRefGoogle Scholar
  76. 76.
    Toussaint LL, Owen AD, Cheadle A. Forgive to live: forgiveness, health, and longevity. J Behav Med. 2012;35(4):375–86.PubMedCrossRefGoogle Scholar
  77. 77.
    Smith TW, Glazer K, Ruiz JM, Gallo LC. Hostility, anger, aggressiveness, and coronary heart disease: an interpersonal perspective on personality, emotion, and health. J Pers. 2004;72(6):1217–70.PubMedCrossRefGoogle Scholar
  78. 78.
    Hoge EA, Chen MM, Orr E, Metcalf CA, Fischer LE, Pollack MH, et al. Loving-kindness meditation practice associated with longer telomeres in women. Brain Behav Immun. 2013;32:159–63.PubMedCrossRefGoogle Scholar
  79. 79.
    Jacobs TL, Epel ES, Lin J, Blackburn EH, Wolkowitz OM, Bridwell DA, et al. Intensive meditation training, immune cell telomerase activity, and psychological mediators. Psychoneuroendocrinology. 2011;36(5):664–81.PubMedCrossRefGoogle Scholar
  80. 80.
    Willeit P, Willeit J, Brandstätter A, Ehrlenbach S, Mayr A, Gasperi A, et al. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol. 2010;30(8):1649–56.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Brouilette SW, Moore JS, McMahon AD, Thompson JR, Ford I, Shepherd J, et al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland primary prevention study: a nested case-control study. Lancet. 2007;369(9556):107–14.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Needham BL, Rehkopf D, Adler N, Gregorich S, Lin J, Blackburn EH, et al. Leukocyte telomere length and mortality in the National Health and Nutrition Examination Survey, 1999–2002. Epidemiology. 2015;26(4):528–35.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Farzaneh-Far R, Cawthon RM, Na B, Browner WS, Schiller NB, Whooley MA. Prognostic value of leukocyte telomere length in patients with stable coronary artery disease: data from the heart and soul study. Arterioscler Thromb Vasc Biol. 2008;28(7):1379–84.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Fitzpatrick AL, Kronmal RA, Gardner JP, Psaty BM, Jenny NS, Tracy RP, et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 2007;165(1):14–21.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Svensson J, Karlsson MK, Ljunggren Ö, Tivesten Å, Mellström D, Movérare-Skrtic S. Leukocyte telomere length is not associated with mortality in older men. Exp Gerontol. 2014;57:6–12.PubMedCrossRefGoogle Scholar
  86. 86.
    Fitzpatrick AL, Kronmal RA, Kimura M, Gardner JP, Psaty BM, Jenny NS, et al. Leukocyte telomere length and mortality in the cardiovascular health study. J Gerontol A Biol Sci Med Sci. 2011;66(4):421–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Ma H, Zhou Z, Wei S, Liu Z, Pooley KA, Dunning AM, et al. Shortened telomere length is associated with increased risk of cancer: a meta-analysis. PLoS One. 2011;6(6):e20466.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Prescott J, Wentzensen IM, Savage SA, De Vivo I. Epidemiologic evidence for a role of telomere dysfunction in cancer etiology. Mutat Res. 2012;730(1–2):75–84.PubMedCrossRefGoogle Scholar
  89. 89.
    Wentzensen IM, Mirabello L, Pfeiffer RM, Savage SA. The association of telomere length and cancer: a meta-analysis. Cancer Epidemiol Biomark Prev. 2011;20(6):1238–50.CrossRefGoogle Scholar
  90. 90.
    Xie H, Wu X, Wang S, Chang D, et al. Long telomeres in peripheral blood leukocytes are associated with an increased risk of soft tissue sarcoma. Cancer. 2013;119(10):1885–91.PubMedCrossRefGoogle Scholar
  91. 91.
    Sanchez-Espiridion B, Chen M, Chang JY, Lu C, Chang DW, Roth JA, et al. Telomere length in peripheral blood leukocytes and lung cancer risk: a large case-control study in Caucasians. Cancer Res. 2014;74(9):2476–86.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Han J, Qureshi AA, Prescott J, Guo Q, Ye L, Hunter DJ, et al. A prospective study of telomere length and the risk of skin cancer. J Invest Dermatol. 2009;129(2):415–21.PubMedCrossRefGoogle Scholar
  93. 93.
    Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003;361(9355):393–5.PubMedCrossRefGoogle Scholar
  94. 94.
    Rode L, Nordestgaard BG, Bojesen SE. Peripheral blood leukocyte telomere length and mortality among 64,637 individuals from the general population. J Natl Cancer Inst. 2015;107(6):djv074.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of EpidemiologyHarvard T. H. Chan School of Public HealthBostonUSA
  2. 2.Department of Medicine and Health Sciences “V. Tiberio”University of MoliseCampobassoItaly

Personalised recommendations