Advertisement

Condensation

  • Sujoy Kumar Saha
  • Hrishiraj Ranjan
  • Madhu Sruthi Emani
  • Anand Kumar Bharti
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Vapour space condensation has been discussed in this chapter. Dropwise condensation, enhancement of film condensation and condensation on horizontal tube banks have been discussed.

Keywords

Vapour space condensation Dropwise condensation Film condensation Horizontal tube banks 

References

  1. Abdullah R, Cooper JR, Briggs A, Rose JW (1995) Condensation of steam and R113 on a bank of horizontal tubes in the presence of a noncondensing gas. Exp Thermal Fluid Sci 10(3):298–306CrossRefGoogle Scholar
  2. Adamek TA (1981) Bestimmung der Kondensationgrossen auf feingewellten Oberflachen zur Auslegun aptimaler Wandprofile. Wdnne Stoffbertrag 15:255–270CrossRefGoogle Scholar
  3. Adamek T, Webb RL (1990a) Prediction of film condensation on horizontal integral fin tubes. Int J Heat Mass Transf 33(8):1721–1735CrossRefGoogle Scholar
  4. Adamek T, Webb RL (1990b) Prediction of film condensation on vertical finned plates and tubes: a model for the drainage channel. Int J Heat Mass Transf 33(8):1737–1749CrossRefGoogle Scholar
  5. Aly NH, Bedrose SD (1995) Enhanced film condensation of steam on spirally fluted tubes. Desalination 101(3):295–301CrossRefGoogle Scholar
  6. Beatty KO, Katz DL (1948) Condensation of vapors on outside of finned tubes. Chem Eng Prog 44:55–70Google Scholar
  7. Belghazi M, Bontemps A, Marvillet C (2002) Condensation heat transfer on enhanced surface tubes: experimental results and predictive theory. J Heat Transf 124(4):754–761CrossRefGoogle Scholar
  8. Belghazi M, Bontemps A, Marvillet C (2003) Experimental study and modelling of heat transfer during condensation of pure flnid and binary mixture on a bundle of horizontal finned tubes. Int J Refrig 26:214–223CrossRefGoogle Scholar
  9. Briggs A, Rose JW (1994) Effect of fin efficiency on a model for condensation heat transfer on a horizontal, integral-fin tube. Int J Heat Mass Transf 37:457–463CrossRefGoogle Scholar
  10. Briggs A, Rose JW (1995) Condensation performance of some commercial integral fin tubes with steam and CFC113. Exp Heat Transf Int J 8(2):131–143CrossRefGoogle Scholar
  11. Briggs A, Rose JW (1996) Condensation on low-fin tubes: effects of non-uniform wall temperature and interphase matter transfer. In: Process, enhancement, and multiphase heat transfer, pp 455–460Google Scholar
  12. Briggs A, Wen XL, Rose JW (1992) Accurate heat transfer measurements for condensation on horizontal, integral-fin tubes. J Heat Transf 114(3):719–726CrossRefGoogle Scholar
  13. Briggs A, Huang XS, Rose JW (1995) An experimental investigation of condensation on integral-fin tubes: effect of fin thickness, height and thermal conductivity (No.CONF-950828). ASME, New York, NYGoogle Scholar
  14. Briggs A, Wang HS, Rose J (2002) Film condensation of steam on a horizontal wire-wrapped tube. Heat Transf 4:123–128Google Scholar
  15. Briggs A, Wang HS, Murase T, Rose JW (2003) Heat transfer measurements for condensation of steam on a horizontal wire-wrapped tube. J Enhanc Heat Transf 10(4)CrossRefGoogle Scholar
  16. Brower SK (1985) The effect of condensate inundation on steam condensation heat transfer in a tube bundle. Naval Postgraduate School, Monterey, CAGoogle Scholar
  17. Brown CE, Matin SA (1971) The Effect of finite metal conductivity on the condensation heat transfer to falling water rivulets on vertical heat-transfer surfaces. J Heat Transf 93(1):69–76CrossRefGoogle Scholar
  18. Browne MW, Bansal PK (1999) An overview of condensation heat transfer on horizontal tube bundles. Appl Therm Eng 19(6):565–594CrossRefGoogle Scholar
  19. Butizov AI, Rifert VG, Leont’yev GG (1975) Heat transfer in steam condensation on wirefinned vertical surfaces. Heat Transf Soviet Res 7(5):116–120Google Scholar
  20. Canavos VTC (1974) In: Afgan N, Schliinder EU (eds) Heat exchangers: design and theory sourcebook. McGraw-Hill, New YorkGoogle Scholar
  21. Carnavos TC (1980) An experimental study: condensing R-11 on augmented tubes. ASME Paper No. 8o-HT-54Google Scholar
  22. Carey VP (1992) Liquid-vapor phase-change phenomena. Hemisphere, Washington, DCGoogle Scholar
  23. Cary JD, Mikic BB (1973) The influence of thermocapillary flow on heat transfer in film condensation. J Heat Transf 95(1):21–24CrossRefGoogle Scholar
  24. Cavallini A, Bella B, Longo GA, Rossetto L (1993) Pure vapour condensation of refrigerant 113 on a horizontal 2000 FPM integral finned tube. In: Taborek J, Rose, Tanasawa I (eds) Condensation and condenser design (Proceedings of the engineering foundation conference on condensation and condenser design). ASME, New York, pp 357–365Google Scholar
  25. Cavallini A, Doretti L, Longo L (1994) Experimental heat transfer coefficients during external condensation of halogenated refrigerants on enhanced tubes. Heat transfer 1994, Proceedings of the 10th international heat transfer conference, vol 5, pp 7–12Google Scholar
  26. Cavallini A, Bella B, Longo GA, Rossetto L (1995) Experimental heat transfer coefficients during condensation of halogenated refrigerants on enhanced tubes. J Enhanc Heat Transf 2:115–126CrossRefGoogle Scholar
  27. Cavallini A, Doretti L, Longo GA, Rossetto L (1996) A new model for forced-convection condensation on integral-fin tubes. J Heat Transf 118(3):689–693CrossRefGoogle Scholar
  28. Cheng B, Tao WQ (1994) Experimental study of R-152a film condensation on single horizontal smooth tube and enhanced tubes. J Heat Transf 116(1):266–270CrossRefGoogle Scholar
  29. Cheng WY, Wang CC Huang LW (1996) Film condensation of HCFC-22 on horizontal enhanced tubes, Int Comm Heat Mass Transf 23(1): pp. 79–90CrossRefGoogle Scholar
  30. Collier JG, Thome JR (1994) Convective boiling and condensation. Clarendon PressGoogle Scholar
  31. Combs SK, Murphy RW (1978) Experimental studies of OTEC heat transfer condensation of ammonia on vertical fluted tubes. In: Proceedings of the fifth ocean thermal energy conversion (OTEC) conference, pp 20–22Google Scholar
  32. Das AK, Meyer DW, Incheck GA, Marto PJ, Memory SB (1995) Effect of fin height and thermal conductivity on the performance of integral-fin tubes for steam condensation. In: Dhir VK (ed) Proceedings of the 30th national heat transfer conference, vol 308. ASME, New York, NY, pp 111–122Google Scholar
  33. Das A, Incheck GA, Marto PJ (1999) The effect of fin height during steam condensation on a horizontal stainless steel integral-fin tube. J Enhanc Heat Transf 6(2–4)Google Scholar
  34. Das A, Kilty HP, Marto PJ, Kumar A, Andeen GB (2000a) Dropwise condensation of steam on horizontal corrugated tubes using an organic self-assembled monolayer coating. J Enhanc Heat Transf 7(2)CrossRefGoogle Scholar
  35. Das AK, Kilty HP, Marto PJ, Andeen GB, Kumar A (2000b) The use of an organic self-assembled monolayer coating to promote dropwise condensation of steam on horizontal tubes. J Heat Transf 122(2):278–286CrossRefGoogle Scholar
  36. Dipprey DF, Sabersky RH (1963) Heat and momentum transfer in smooth and rough tubes at various Prandtl numbers. Int J Heat Mass Transf 6(5):329–353CrossRefGoogle Scholar
  37. Fathalah K, Aly SE, Darwish M, Radhwan A (1987) A theoretical study of enhanced condensation over horizontal fluted tubes. Desalination 65:25–42CrossRefGoogle Scholar
  38. Fujii T (1991) Representative physical properties for the condensate film and the vapor boundary layer. In: Theory of laminar film condensation. Springer, New York, NY, pp 153–172zbMATHCrossRefGoogle Scholar
  39. Fujii T, Wang WC, Koyama S, Shimizu Y (1985) Heat transfer enhancement for gravity controlled condensation on a horizontal tube by a coiled wire. Trans J Soc Mech Eng Int J Ser B 51(467):2436–2441CrossRefGoogle Scholar
  40. Glicksman LR, Mikic BB, Snow DF (1973) Augmentation of film condensation on the outside of horizontal tubes. AICHE J 19(3):636–637CrossRefGoogle Scholar
  41. Gogonin II, Kabov OA (1996) An experimental study of R-11 and R-12 film condensation on horizontal integral-fin tubes. J Enhanc Heat Transf 3:43–54CrossRefGoogle Scholar
  42. Gregorig R (1954a) Film condensation on finely rippled surfaces with consideration of surface tension. Z Angew Math Phys 5(1):36–49CrossRefGoogle Scholar
  43. Gregorig R (1954b) Hautkondensation an feingewellten Oberflächen bei Berücksichtigung der Oberflächenspannungen. Zeitschrift für angewandte Mathematik und Physik ZAMP 5(1):36–49zbMATHCrossRefGoogle Scholar
  44. Griffith P (1985) Dropwise condensation. In: Rohsenow WM, Hartnett JP, Ganic EN (eds) Handbook of heat transfer fundamentals. McGraw-Hill, New YorkGoogle Scholar
  45. Hanneman RJ (1977) Recent advances in dropwise condensation theory. ASME paper 77-WA/HT-21Google Scholar
  46. Henrici K (1961) Kodensation von Frigen 12 and Frigen 22 an Glatten und Berippten Rohren. Dissertation, TU KarlsruheGoogle Scholar
  47. Hirasawa SH, Hijikata K, Mori Y, Nakayama W (1980) Effect of surface tension on condensate motion in laminar film condensation (study of liquid film in a small trough). Int J Heat Mass Transf 23:1471–1478CrossRefGoogle Scholar
  48. Honda H, Makishi O (1995) Effect of a circumferential rib on film condensation on a horizontal two-dimensional fin tube. J Enhanc Heat Transf 2(4)CrossRefGoogle Scholar
  49. Honda H, Nozu S (1985) A dimensionless correlation for film condensation on horizontal, low integral-fin tubes. Bull JSME 28:2824Google Scholar
  50. Honda H, Nozu S (1987a) A prediction method for heat transfer during film condensation on horizontal low integral-fin tubes. J Heat Transf 109(1):218–225CrossRefGoogle Scholar
  51. Honda H, Nozu S (1987b) Effect of drainage strips on the condensation heat transfer performance of horizontal finned tubes. Heat Transfer Science and Technology, Hemisphere, New York, pp 455–462Google Scholar
  52. Honda H, Takamatsu H, Kim K (1994) Condensation of CFC-11 and HCFC-123 in in-line bundles of horizontal finned tubes: effect of fin geometry. J Enhanc Heat Transf 1:197–210CrossRefGoogle Scholar
  53. Honda H, Nozu S, Mitsumori, K (1983). Augmentation of condensation on horizontal finned tubes by attaching a porous drainage plate. In: Proceedings of the ASME-JSME thermal engineering joint conference, vol 3, pp 289–296Google Scholar
  54. Honda H, Uchima B, Nozu S (1987) A generalized prediction method for heat transfer during film condensation on a horizontal low-finned tube. In: Proceedings of American Society of Engineers and Japan Society of Mechanical Engineers, HI ASME-JSME Second Thermal Engineering Joint Conference, Honolulu, vol 4, pp 385–392Google Scholar
  55. Honda H, Nozu S, Takeda Y (1989) A theoretical model of film condensation in a bundle of horizontal low finned tubes. J Heat Transf 11(2):525–532CrossRefGoogle Scholar
  56. Honda H, Uchima B, Nozu S, Nakata H, Torigoe E (1991) Film condensation of R-113 on in-line bundles of horizontal finned tubes. J Heat Transf 113(2):479–486CrossRefGoogle Scholar
  57. Honda H, Uchima B, Nozu S, Torigoe E, Imai S (1992) Film condensation of R-113 on staggered bundles of horizontal finned tubes. J Heat Transf 114(2):442–449CrossRefGoogle Scholar
  58. Honda H, Takata N, Takamatsu H, Kim JS, Usami K (2003) Effect of fin geometry on condensation of R407C in a staggered bundle of horizontal finned tubes. J Heat Transf 125(4):653–660CrossRefGoogle Scholar
  59. Iltscheff S (1971) Some experiments concerning the attainment of drop condensation with fluorinated refrigerants. Kältetechnik-Klimatisierung 23:237–241Google Scholar
  60. Jaber MH, Webb RL (1993) Enhanced tubes for steam condensers. An Int J Exp Heat Transf 6(1):35–54CrossRefGoogle Scholar
  61. Jaber MH, Webb RL (1996) Steam condensation on horizontal integral-fin tubes of low thermal conductivity. J Enhanc Heat Transf 3(1)CrossRefGoogle Scholar
  62. Jung D, Kim C-B, Cho S, Song K (1999) Condensation heat transfer coefficients of enhanced tubes with alternative refrigerants for CFC11 and CFC12. Int J Refrig 22:548–557CrossRefGoogle Scholar
  63. Karkhu VA, Borovkov V (1971) Film condensation of vapor at finely-finned horizontal tubes. Heat Transf Soviet Res 3(2):183–191Google Scholar
  64. Katz DL, Geist JM (1948) Condensation on six finned tubes in a vertical row. Trans ASME 70(8):907–914Google Scholar
  65. Kedzierski MA (1987) Experimental measurements of condensation on vertical plates with enhanced fins. In: Boiling and condensation in heat transfer, Boston, MAGoogle Scholar
  66. Kedzierski MA, Webb RL (1990) Practical fin shapes for surface-tension-drained condensation. J Heat Transf 112(2):479–485CrossRefGoogle Scholar
  67. Kern DQ (1958) Mathematical development of tube loading in horizontal condensers. AICHE J 4(2):157–160CrossRefGoogle Scholar
  68. Kim NH (2019) Steam condensation enhancement and fouling in titanium corrugated tubes. J Enhanc Heat Transf 26(1)CrossRefGoogle Scholar
  69. Kim KJ, Lefsaker AM, Razani A, Stone A (2001) The effective use of heat transfer additives for steam condensation. Appl Therm Eng 21(18):1863–1874CrossRefGoogle Scholar
  70. Kumar R, Varma HK, Mohanty B, Agrawal KN (2000) Condensation of R-134a vapor over single horizontal circular integral-fin tubes with trapezoidal fins. Heat Transfer Eng 21(2):29–39CrossRefGoogle Scholar
  71. Kumar R, Varma HK, Mohanty B, Agrawal KN (2002a) Augmentation of heat transfer during filmwise condensation of steam and R-134a over single horizontal finned tubes. Int J Heat Mass Transf 45(1):201–211CrossRefGoogle Scholar
  72. Kumar R, Varma HK, Mohanty B, Agrawal KN (2002b) Prediction of heat transfer coefficients during condensation of water and R-134a on single horizontal integral-fin tubes. Int J Refrig 25:111–126CrossRefGoogle Scholar
  73. Kun LC, Ragi EG (1981) US Patent No 4,253,519, US Patent and Trademark Office, Washington, DCGoogle Scholar
  74. Lan Z, Ma X, Zhou XD, Wang M (2009) Theoretical study of dropwise condensation heat transfer: effect of the liquid-solid surface free energy difference. J Enhanc Heat Transf 16(1)CrossRefGoogle Scholar
  75. Lee WC, Rose JW (1984) Forced convection film condensation on a horizontal tube with and without non-condensing gases. Int J Heat Mass Transf 27(4):519–528CrossRefGoogle Scholar
  76. Liu X, Ma T, Zhang Z (1999) Investigation of enhancement of steam condensation heat transfer on finned tubes with porous drainage strips, Paper AJTE99-6350. In: Proceedings of the 5th ASMEIJSME joint thermal engineering conference, March 15–19, San Diego, CAGoogle Scholar
  77. Lixin C, Jiehui Y (1998) A new treated surface for achieving dropwise condensation. J Enhanc Heat Transf 5(1)CrossRefGoogle Scholar
  78. Ma X, Chen J, Xu D, Lin J, Ren C, Long Z (2002) Influence of processing conditions of polymer film on dropwise condensation heat transfer. Int J Heat Mass Transf 45(16):3405–3411CrossRefGoogle Scholar
  79. Marto PJ, Wanniarachchi AS (1984) The use of wire-wrapped tubing to enhance steam condensation in tube bundles. In: Heat transfer in heat rejection systems, pp 9–16Google Scholar
  80. Marto PJ, Reilly D, Fenner JH (1979) An experimental comparison of enhanced heat transfer condenser tubing. Adv Enhanc Heat Transf 16:1–9Google Scholar
  81. Marto PJ, Mitrou E, Wanniarachchi AS, Katsuta M (1987) Film condensation of steam on a horizontal wire-wrapped tube. In: Proceedings of the 2nd ASME-JSME thermal engineering joint conference, vol 1, pp 509–516Google Scholar
  82. Marto PJ, Zebrowski D, Wanniarachchi AS, Rose JW (1988) Film condensation of R-113 on horizontal finned tubes. In: Fundamentals of phase change: boiling and condensation, pp 583–592Google Scholar
  83. Masuda H, Rose JW (1987) Condensation of ethylene glycol on horizontal integral-fin tubes. In: Proceedings of the 1987 ASME-JSME thermal engineering joint conference, vol 1. JSME and ASME, pp 525–530Google Scholar
  84. McNaught JM, Cotchin CD (1989) Heat transfer and pressure drop in a shell and tube condenser with plain and low-fin tube bundles. Chem Eng Res Des (67):127–133Google Scholar
  85. Medwell JO, Nicol AA (1965) Surface roughness effects on condensate films. ASME-AMER Soc Mech Eng 87(10):80Google Scholar
  86. Mehta MH, Rao MR (1979) Heat transfer and frictional characteristics of spirally enhanced tubes for horizontal condensers. Adv Enhanc Heat Transf:11–21Google Scholar
  87. Michael AG, Marto PJ, Wanniarachchi AS, Rose JW (1989) Effect of vapour velocity during condensation on horizontal smooth and finned tubes. In: Proceedings of the ASME winter annual meeting, San FranciscoGoogle Scholar
  88. Mori Y, Hijikata H, Hirasawa S, Nakayama W (1979) Optimized performance of condensers with outside condensing surface. In: Chenoweth JM et al (eds) Condensation heat transfer. ASME, New York, pp 55–62Google Scholar
  89. Newson IH, Hodgson TD (1974) The development of enhanced heat transfer condenser tubing. Desalination 14(3):291–323CrossRefGoogle Scholar
  90. Nicol AA, Medwell JO (1966) The effect of surface roughness on condensing steam. The Canadian J Chem Engg 44(3):170–173CrossRefGoogle Scholar
  91. Notaro F (1979) US Patent No. 4,154,294, U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  92. Nusselt W (1916) Die Oberflachenkondensation des Wasserdampfes. Zeitschr Ver Deut Ing 60:541–569Google Scholar
  93. Panchal CB (1994) Generalized correlation for condensation on vertical fluted surfaces. Heat Transf Eng 15(4):19–23CrossRefGoogle Scholar
  94. Pearson JF, Withers JG (1969) New finned tube configuration improves refrigerant condensing. ASHRAE J 75:77–82Google Scholar
  95. Rabas TJ, Taborek J (1999) Performance, fouling and cost considerations of enhanced tubes in in power-plant condensers. J Enhanc Heat Transf 6(2–4)Google Scholar
  96. Rao MR (1988) Heat transfer and friction correlations for turbulent flow of water and viscous non-newtonian fluids in single–start spirally corrugated tubes. In: Proceedings of the national heat transfer conference, HTD-96, ASME, New York, vol 1, pp 677–683Google Scholar
  97. Renken KJ, Aboye M (1993a) Experiments on film condensation promotion within thin inclined porous coatings. Int J Heat Mass Transf 36(5):1347–1355CrossRefGoogle Scholar
  98. Renken KJ, Aboye M (1993b) Experiments on film condensation promotion within thin inclined porous coatings. Int J Heat Mass Transf 14:48–53Google Scholar
  99. Renken KJ, Mueller CD (1993) Measurements of enhanced film condensation utilizing a porous metallic coating. J Thermophys Heat Transf 7(1):148–152CrossRefGoogle Scholar
  100. Renken KJ, Raich MR (1996) Forced convection steam condensation experiments within thin porous coatings. Int J Heat Mass Transf 39(14):2937–2945CrossRefGoogle Scholar
  101. Rifert VG, Leontev G (1976) Analysis of heat transfer with steam condensing on a vertical surface with wires to promote heat transfer. Therm Eng 23(4):58–61Google Scholar
  102. Roques JF, Thome JR (2003) Falling film transitions between droplet, column, and sheet flow modes on a vertical array of horizontal 19 FPI and 40 FPI low-finned tubes. Heat Transf Eng 24(6):40–45CrossRefGoogle Scholar
  103. Rose JW (1984) Effect of pressure gradient in forced convection film condensation on a horizontal tube. Int J Heat Mass Transf 27(1):39–47MathSciNetCrossRefGoogle Scholar
  104. Rose JW (1994) An approximate equation for the vapour-side heat-transfer coefficient for condensation on low-finned tubes. Int J Heat Mass Transf 37(5):865–875zbMATHCrossRefGoogle Scholar
  105. Rose JW (2002) An analysis of film condensation on a horizontal wire-wrapped tube. Chem Eng Res Des 80(3):290–294CrossRefGoogle Scholar
  106. Rudy TM, Webb RL (1983) Proceedings of the 1st ASME-JSME thermal engineering joint conference, vol 1, pp 373–377Google Scholar
  107. Rudy TM, Webb RL (1985) An analytical model to predict condensate retention on horizontal integral-fin tubes. J Heat Transf 107(2):361–368CrossRefGoogle Scholar
  108. Sadek H, Cotton JS, Ching CY, Shoukri M (2011) In-tube convective condensation under AC high-voltage electric fields. J Enhanc Heat Transf 18(2)CrossRefGoogle Scholar
  109. Shah RK, Zhou SQ, Tagavi KA (1999) The role of surface tension in film condensation in extended surface passages. J Enhanc Heat Transf 6(2–4):179–216CrossRefGoogle Scholar
  110. Shekriladze IG, Gomelauri VI (1966) Theoretical study of laminar film condensation of flowing vapour. Int J Heat Mass Transf 9(6):581–591CrossRefGoogle Scholar
  111. Singh SK, Kumar R, Mohanty B (2001) Heat transfer during condensation of steam over a vertical grid of horizontal integral-fin copper tubes. Appl Therm Eng 21(7):717–730CrossRefGoogle Scholar
  112. Srinivasan PSS, Balasubramanian R, Gaitonde UN (2002) Correlation for laminar film condensation over single horizontal integral-fin copper tubes. Heat Transf 4:213–218Google Scholar
  113. Sreepathi LK, Bapat SL, Sukhatme SP (1996) Heat transfer during film condensation of R-123 vapour on horizontal integral-fin tubes. J Enhanc Heat Transf 3(2):147CrossRefGoogle Scholar
  114. Staub PW (1966) Condensing heat transfer surface device, US Patent 3,289,752Google Scholar
  115. Sukhatme SP, Jagadish BS, Prabhakaran P (1990) Film condensation of R-11 vapor on single horizontal enhanced condenser tubes. J Heat Transf 112(1):229–234CrossRefGoogle Scholar
  116. Takahashi A, Nosetani T, Miyata K (1979) Heat transfer performance of enhanced low finned tubes with spirally integral inside fins. Sumitomo Light Metal Tech Rep 20:59–65Google Scholar
  117. Thomas DG (1967) Enhancement of film condensation heat transfer rates on vertical tubes by vertical wires. Ind Eng Chem Fundam 6(1):97–103CrossRefGoogle Scholar
  118. Thomas DG (1968) Enhancement of film condensation rate on vertical tubes by longitudinal fins. AICHE J 14(4):644–649CrossRefGoogle Scholar
  119. Thomas A, Lorenz JJ, Hillis DA, Young DT, Sather NP (1979) Performance tests of the 1 MWt shell and tube exchangers for OTEC. In: Proceedings of the 6th OTEC conference, Paper leGoogle Scholar
  120. Utaka Y, Nishikawa T (2003) Measurement of condensate film thickness for solutal Marangoni condensation applying laser extinction method. J Enhanc Heat Transf 10(2)CrossRefGoogle Scholar
  121. Wang SP, Hijikata K, Deng SJ (1990) Experimental study on condensation heat transfer enhancement by Various Kinds of Integral Finned Tubes. In: Condensers and condensation, proceedings of the 2nd international symposium, pp xv–xxiiiCrossRefGoogle Scholar
  122. Wang ZZ, Wei D, Hong F (2000) Experimental study of condensation heat transfer promotion on a fluted tube with thin porous coatings. Heat Transf Eng 21(4):46–52CrossRefGoogle Scholar
  123. Wanniarachchi AS, Marto PJ, Rose JW (1986) Film condensation of steam on horizontal finned tubes: effect of fin spacing. J Heat Transf 108(4):960–966CrossRefGoogle Scholar
  124. Webb RL (1979) A generalized procedure for the design and optimization of fluted Gregorig condensing surfaces. J Heat Transf 101:335–339CrossRefGoogle Scholar
  125. Webb RL (1984) The effects of vapor velocity and tube bundle geometry on condensation in shell-side refrigeration condensers. ASHRAE Trans 90(1B):39–59Google Scholar
  126. Webb RL, Kim NY (2005) Principles of enhanced heat transfer. Taylor and Francis, New YorkGoogle Scholar
  127. Webb RL, Kedzierski MA (1990) Practical fin shapes for surface tension drained condensation. J Heat Transf 112:479–485CrossRefGoogle Scholar
  128. Webb R, Murawski CG (1990) Row effect for R-11 condensation on enhanced tubes. J Heat Transf 112(3):768–776CrossRefGoogle Scholar
  129. Webb RL, Keswani ST, Rudy TM (1982) Investigation of surface tension and gravity effects in film condensation. In: Proceedings of the 7th international heat transfer conference, Munich. Hemisphere, Washington, DC, pp 175–180Google Scholar
  130. Webb RL, Rudy TM, Kedzierski MA (1985) Prediction of the condensation coefficient on horizontal integral-fin tubes. J Heat Transf 107(2):369–376CrossRefGoogle Scholar
  131. Wen XL, Briggs A, Rose JW (1994) Enhancement of condensation heat transfer on integral-fin tubes using radiused fin-root fillets. J Enhanc Heat Transf 1(2)CrossRefGoogle Scholar
  132. Wildsmith G (1980) Open Discussion section. In: Marro PJ, Nunn RH (eds) Power condenser heat transfer technology. Hemisphere, New York, pp 463–468Google Scholar
  133. Withers JG, Young EH (1971) Steam condensing on vertical rows of horizontal corrugated and plain tubes. Application in desalination of water. Indust Eng Chem Process Des Dev 10(1):19–30CrossRefGoogle Scholar
  134. Yabe A (1991) Active heat transfer enhancement by applying electric fields. In: Proceedings of the 1991 ASME JSME thermal engineering joint conferenceGoogle Scholar
  135. Yan J, Wang J, Hu S, Chong D, Liu J (2011) Marangoni condensation heat transfer of water-ethanol mixture vapor. J Enhanc Heat Transf 18(4)CrossRefGoogle Scholar
  136. Yau KK et al (1985) J Heat Transf:108–377Google Scholar
  137. Yau KK, Cooper JR, Rose JW (1986) Horizontal plain and low-finned condenser tubes—effect of fin spacing and drainage strips on heat transfer and condensate retention. J Heat Transf 108(4):946–950CrossRefGoogle Scholar
  138. Yorkshire (1982) YIM heat exchanger tubes: design data for horizontal rope tubes in steam condensers. Technical Memorandum 3, Yorkshire Imperial Metals, Ltd., Leeds, EnglandGoogle Scholar
  139. Zener C, Lavi A (1974) Drainage systems for condensation. J Heat Transf 96:209–205Google Scholar
  140. Zhao Q, Burnside BM (1994) Dropwise condensation of steam on ion implanted condenser surfaces. Heat Recov Syst CHP 14(5):525–534CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sujoy Kumar Saha
    • 1
  • Hrishiraj Ranjan
    • 1
  • Madhu Sruthi Emani
    • 1
  • Anand Kumar Bharti
    • 1
  1. 1.Mechanical Engineering DepartmentIndian Institute of Engineering, Science and Technology, ShibpurHowrahIndia

Personalised recommendations