Advertisement

Vortex Generators

  • Sujoy Kumar Saha
  • Hrishiraj Ranjan
  • Madhu Sruthi Emani
  • Anand Kumar Bharti
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

This chapter has been dedicated to understand the basic concepts of vortex generators for heat transfer enhancement in plate-fin heat exchangers. The performance of transverse, longitudinal, and wing-type vortex generators has been discussed.

Keywords

Transverse vortex generators Longitudinal vortex generators Wing-type vortex generators Winglet vortex generators Common flow-down vortices Common flow-up vortices 

References

  1. Ahmed HE, Mohammed HA, Yusoff MZ (2012a) An overview on heat transfer augmentation using vortex generators and nanofluids: approaches and applications. Renew Sust Energ Rev 16:5951–5993CrossRefGoogle Scholar
  2. Ahmed HE, Mohammed HA, Yusoff MZ (2012b) Heat transfer enhancement of laminar nanofluids flow in a triangular duct using vortex generators. Superlattice Microst 52:398–415CrossRefGoogle Scholar
  3. Althaher MA, Abdul-Rassol AA, Ahmed HE, Mohammed HA (2012) Turbulent heat transfer enhancement in a triangular duct using delta-winglet vortex generators. Heat Transfer Asian Res 41:43–62CrossRefGoogle Scholar
  4. Amon CH (1989) Numerical investigation of starting flow and supercritical heat transfer enhancement in grooved channels: understanding and exploitation. In: Proceedings of the 10th Brazil cong mech eng, Rio de Janeiro, pp 197–200Google Scholar
  5. Amon CH, Mikic BB (1989) Spectral element simulation of forced convective heat transfer. Application to slotted channel flow. In: National heat transfer conference, HTD, vol 110, pp 175–183Google Scholar
  6. Amon CH, Mikic BB (1990) Numerical prediction of convective heat transfer in self-sustained oscillatory flows. J Thermophys Heat Transfer 4(2):239–246CrossRefGoogle Scholar
  7. Aris MS, McGlen R, Owen I, Sutcliffe CJ (2011) An experimental investigation into the deployment of 3-D, finned wing and shape memory alloy vortex generators in a forced air convection heat pipe fin stack. Appl Therm Eng 31:2230–2240CrossRefGoogle Scholar
  8. Brockmeier U (1987) Numerisches Verfahren zur Berechnung dreidimensionaler Stromungs- und Temperaturfelder in Kanlilen mit Llingswirbelerzeugern und Untersuchung von Warmeiibergang und Stromungsverlust. Dissertation, Ruhr-Universitiit BochumGoogle Scholar
  9. Brockmeier U, Fiebig M, Güntermann T, Mitra NK (1989) Heat transfer enhancement in fin-plate heat exchangers by wing type vortex generators. Chem Eng Technol 12(1):288–294CrossRefGoogle Scholar
  10. Brockmeier U, Guntermann T, Fiebig M (1993) Performance evaluation of a vortex generator heat transfer surface and comparison with different high performance surface. Int J Heat Mass Transfer 36:2575–2587CrossRefGoogle Scholar
  11. Chen Y (1993) Numerische Untersuchungen von Lamellen-RohrWarmeiibertragerelementen unter Beriicksichtigung der Warmeleitung in den Lamellen. Diplomarbeit Nr. 93/12, Ruhr-Universitiit BochumGoogle Scholar
  12. Chen TY, Shu HT (2004) Flow structures and heat transfer characteristics in fan flows with and without delta-wing vortex generators. Exp Thermal Fluid Sci 28:273–282CrossRefGoogle Scholar
  13. Chomdee S, Kiatsiriroat T (2006) Enhancement of air cooling in staggered array of electronic modules by integrating delta winglet vortex generators. Int Commun Heat Mass Transfer 33:618–626CrossRefGoogle Scholar
  14. Dake T, Majdalani J (2009) Improving flow circulation in heat sinks using quadrupole vortices. In: Proceedings of the ASME 2009 InterPACK conference. American Society of Mechanical Engineers, San Francisco, CAGoogle Scholar
  15. Dong Y (1989) Experimentelle Untersuchung der Wechselwirkungen von Liingswirbelerzeugern und Kreiszylindern in Kanalstromungen in Bezug aufWarmeiibergang und Stromungsverlust. Dissertation, Ruhr-Universitiit BochumGoogle Scholar
  16. Edwards FJ, Sherill N (1974) The improvement of forced surface heat transfer using surface protrusions in the form of cubes and vortex generators. In: Proceedings of the 5th international heat transfer conference, vol 2. Tokyo, pp 244–248Google Scholar
  17. Eibeck PA, Eaton JK (1987) Heat transfer effects of a longitudinal vortex embedded in a turbulent shear flow. J Heat Transfer 109:16–24CrossRefGoogle Scholar
  18. Ellouze A, Blancher S, Crelf R (1993) Flow structure and heat transfer in a wavy wall channel at steady and unsteady flow regime. In: Proc Eurotherm 31 “Vortices and Heat Transfer”, Bochum, Germany, pp 30–35Google Scholar
  19. Esformes JL (1989) Ramp wing enhanced plate fin. U.S. patent 4,817, p 709Google Scholar
  20. Fiebig M (1995) Vortex generators for compact heat exchangers. J Enhanc Heat Transf 2:1–2CrossRefGoogle Scholar
  21. Fiebig M, Brockmeier U, Mitra NK, Gü Termann T (1989) Structure of velocity and temperature fields in laminar channel flows with longitudinal vortex generators. Numer Heat Transfer Appl 15(3):281–302CrossRefGoogle Scholar
  22. Fiebig M, Giintermann T (1989) Heat transfer enhancement by longitudinal vortex generators. In: Proceedings of the 10th Brazil cong mech eng, Rio de Janeiro, pp 445–448Google Scholar
  23. Fiebig M, Valencia A, Mitra NK (1993) Wing-type vortex generators for fin-and-tube heat exchangers. Exp Therm Fluid Sci 7(4):287–295CrossRefGoogle Scholar
  24. Fiebig M, Kallweit P, Mitra NK (1986) Wing type vortex generators for heat transfer enhancement. IHTC, vol 6, pp 2909–2913Google Scholar
  25. Fiebig M, Guntermann T (1993a) A class of high performance compact fin-plate heat exchanger elements. In: Lee JS, Chung SH, Kim KH (eds) The 6th Int symp on transport phenomena in thermal engineering, vol III. Korean Society of Mechanical Engineering, Seoul, pp 49–54Google Scholar
  26. Fiebig M, Guntermann T (1993b) Heat transfer surfaces with longitudinal vortex generators for compact plate heat exchangers. In: Proc 1st international thermal energy congress ITEC93, vol 1. MarakeschGoogle Scholar
  27. Fiebig M, Guntermann T, Mitra NK (1995) Numerical analysis of heat transfer and flow loss in a parallel plate heat exchanger element with longitudinal vortex generators as fins. J Heat Transfer 117(4):1064–1068CrossRefGoogle Scholar
  28. Ferrouillat S, Tochon P, Garnier C, Peerhossaini H (2006) Intensification of heat-transfer and mixing in multifunctional heat exchangers by artificially generated streamwise vorticity. Appl Therm Eng 26:1820–1829CrossRefGoogle Scholar
  29. Guntermann T (1992) Dreidimensionale stationare und selbsterregt-schwingende Stromungs- und Temperaturfelder in Hochleistungswiirmeiibertragern mit Wirbelerzeugern. Dissertation, RuhrUniversitat BochumGoogle Scholar
  30. Greiner M, Chen RF, Witz RA (1989) Heat transfer augmentation through wall shape induced flow destabilization. In: National heat tranefer conference, HTD, vol 107Google Scholar
  31. Grosse-Gorgemann A, Weber D, Fiebig M (1993b) Numerical and experimental investigation of self-sustained oscillations in channels with periodic structures. In: Proc Eurotherm 31 “Vortices and Heat Transfer”, Bochum, Germany, pp 42–50Google Scholar
  32. Grosse-Gorgemann A, Weber D, Fiebig M (1993c) Self-sustained oscillations: heat transfer and flow losses in Laminar channel flow with rectangular vortex generators. In: Proc Eurotherm 31 “Vortices and Heat Transfer”, Bochum, Germany, pp 107–111Google Scholar
  33. Henze M, von Wolfersdorf J, Weigand B, Dietz CF, Neumann SO (2011) Flow and heat transfer characteristics behind vortex generators – a benchmark dataset. Int J Heat Fluid Flow 32:318–328CrossRefGoogle Scholar
  34. Henze M, von Wolfersdorf J (2011) Influence of approach flow conditions on heat transfer behind vortex generators. Int J Heat Mass Transf 54:279–287CrossRefGoogle Scholar
  35. Herman CV, Mayinger F, Sekulic DP (1991) Experimental verification of oscillatory phenomena in heat transfer in a Communicating Channel geometry. Proc 2nd world conf on exp heat transf, Fluid mech and thermodynamics, June 23–28, Dubrovnik, YugoslaviaGoogle Scholar
  36. Huisseune H, T’Joen C, De Jaeger P, Ameel B, De Schampheleire S, De Paepe M (2013a) Performance enhancement of a louvered fin heat exchanger by using delta winglet vortex generators. Int J Heat Mass Transf 56:475–487CrossRefGoogle Scholar
  37. Huisseune H, T’Joen C, De Jaeger P, Ameel B, De Schampheleire S, De Paepe M (2013b) Influence of the louver and delta winglet geometry on the thermal hydraulic performance of a compound heat exchanger. Int J Heat Mass Transf 57:58–72CrossRefGoogle Scholar
  38. Joardar A, Jacobi AM (2007) A numerical study of flow and heat transfer enhancement using an array of delta-winglet vortex generators in a fin-and-tube heat exchanger. J Heat Transf 129:1156–1167CrossRefGoogle Scholar
  39. Kallweit P (1986) Liingswirbelerzeuger fiir den Einsatz in Lamellenwiirmetauschern. Dissertation, Ruhr-Universitiit BochumGoogle Scholar
  40. Kays WM, London AL (1984) Compact heat exchangers. 3rd Edition, McGraw-Hill, New YorkGoogle Scholar
  41. Kline SJ, McClintok F (1953) Describing uncertainty in single sample experiments. Mech Eng 75:3–8Google Scholar
  42. Kotcioglu I, Caliskan S (2008) Experimental investigation of a cross-flow heat exchanger with wing-type vortex generators. J Enhanc Heat Transf 15(2):113–127CrossRefGoogle Scholar
  43. Kotcioğlu İ, Ayhan T, Olgun H, Ayhan B (1998) Heat transfer and flow structure in a rectangular channel with wing-type vortex generator. Turk J Eng Environ Sci 22(3):185–196Google Scholar
  44. Lee GH (1979) Effect of vortex generators on the heat transfer from rectangular plate fins. The Lumus Company Limited, Heat Transfer Division, England, Report No. HR-159Google Scholar
  45. Lee KB, Kwon YK (1992) Flow and thermal field with relevance to heat transfer enhancement of interrupted-plate heat exchangers. Exp Heat Transfer 5:83–100CrossRefGoogle Scholar
  46. Leu JS, Wu YH, Jang JY (2004) Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators. Int J Heat Mass Transf 47:4327–4338CrossRefGoogle Scholar
  47. Li HY, Chen CL, Chao SM, Liang GF (2013) Enhancing heat transfer in a plate-fin heat sink using delta winglet vortex generators. Int J Heat Mass Transf 67:666–677CrossRefGoogle Scholar
  48. Li HY, Liao WR, Li TY, Chang YZ (2017) Application of vortex generators to heat transfer enhancement of a pin-fin heat sink. Int J Heat Mass Transf 112:940–949CrossRefGoogle Scholar
  49. Mehta RD, Shabaka IM, Shibi A, Bradshaw P (1983) Longitudinal vortices imbedded in turbulent boundary layers. AIAA Paper, Albuquerque, NMCrossRefGoogle Scholar
  50. Milliat JP (1961) Experimental study of finned cans of the ‘herring-bone’ type. In: Int. j. Brit. nuclear energy conf., vol 6, Electricite de France, ChatouGoogle Scholar
  51. Min C, Qi C, Kong X, Dong J (2010) Experimental study of rectangular channel with modified rectangular longitudinal vortex generators. Int J Heat Mass Transf 53:3023–3029CrossRefGoogle Scholar
  52. Mullisen RS, Loehrke RI (1986) A study of the flow mechanisms responsible for heat transfer enhancement in interrupted-plate heat exchangers. J Heat Transfer 108:377–385CrossRefGoogle Scholar
  53. Oğulata RT, Doba F, Yilmaz T (2000) Irreversibility analysis of cross flow heat exchangers. Energy Convers Manag 41(15):1585–1599CrossRefGoogle Scholar
  54. Pang K, Tao WQ, Zhang HH (1990) Numerical analysis of fully developed fluid flow and heat transfer for arrays of interrupted plates positioned convergently-divergently along the flow direction. Numer Heat Transfer Part A 18:309–324CrossRefGoogle Scholar
  55. Patankar SV, Prakash C (1981) An analysis of the effect of plate thickness on laminar flow and heat transfer in interrupted plate passages. Int J Heat Mass Transfer 24:1801–1810CrossRefGoogle Scholar
  56. Pauley WR, Eaton JK (1988) Experimental study of the development of longitudinal vortex pairs embedded in a turbulent boundary layer. AIAA J 26:816–823CrossRefGoogle Scholar
  57. Pescod D (1974) The effects of turbulence promoters on the performance of plate heat exchangers. In: Heat exchangers: design and theory sourcebook. Scripta Book Company, Washington, pp 601–616Google Scholar
  58. Pesteei SM, Subbarao PM, Agarwal RS (2005) Experimental study of the effect of winglet location on heat transfer enhancement and pressure drop in fin-tube heat exchangers. Appl Therm Eng 25(11–12):1684–1696CrossRefGoogle Scholar
  59. Riemann K-A (1992) Wiirmeiibergang und Druckabfall in Kaniilen mit periodischen Wirbelerzeugern bei thermischem Anlauf. Dissertation, Ruhr-Universitiit BochumGoogle Scholar
  60. Russel CMB, Jones TV, Lee GH (1982) Heat transfer enhancement using vortex generators. In: Proceedings of the 7th international heat transfer conference, vol 3, pp 283–288Google Scholar
  61. Sahin B, Yakut K, Kotcioglu I, Celik C (2005) Optimum design parameters of a heat exchanger. Appl Energy 82(1):90–106CrossRefGoogle Scholar
  62. Sinha A, Raman KA, Chattopadhyay H, Biswas G (2013) Effects of different orientations of winglet arrays on the performance of plate-fin heat exchangers. Int J Heat Mass Transf 57:202–214CrossRefGoogle Scholar
  63. Tauscher R, Mayinger F (1997) Enhancement of heat transfer in a plate heat exchanger by turbulence promoters. In: Shah RK, Bell KJ, Mochizuki S, Wadekar VW (eds) Proc of the int conf on compact heat exchangers for the process industries. Begell House Inc., New York, pp 253–360Google Scholar
  64. Tian LT, He YL, Lei YG, Tao WQ (2009) Numerical study of fluid flow and heat transfer in a flat-plate channel with longitudinal vortex generators by applying field synergy principle analysis. Int Commun Heat Mass Transfer 36:111–120CrossRefGoogle Scholar
  65. Tiggelbeck S (1990) Experirnentelle Untersuchungen an Kanalstromungen mit Einzel- und Doppel-Wirbelerzeuger-Reihen fiir den Einsatz in kompakten Wiirmetauschem. Dissertation, RuhrUniversitiit BochumGoogle Scholar
  66. Tiggelbeck T, Mitra NK, Fiebig M (1993) Experimental investigations of heat transfer and flow losses in a channel with double rows of longitudinal vortex generators. Int J Heat Mass Transf 36(9):2327–2337CrossRefGoogle Scholar
  67. Tiggelbeck S, Mitra NK, Fiebig M (1994) Comparison of wing-type vortex generators for heat transfer enhancement in channel flows. J Heat Transfer 116:880–885CrossRefGoogle Scholar
  68. Torii K, Nishina K, Nakayama K (1994) Mechanism of heat transfer augmentation by longitudinal vortices in a flat plate boundary layer. In: Heat transfer proc 10th int heat trans conf, vol 5, pp 123–128Google Scholar
  69. Valencia A (1993) Wiirmeiibergang und Druckverlust in LamellenRohr-Wiirmeiibertragern mil Liingswirbelerzeugern. Dissertation, Ruhr-Universitiit BochumGoogle Scholar
  70. Vasudevan R, Eswaran V, Biswas G (2000) Winglet-type vortex generators for plate-fin heat exchangers using triangular fins. Numer Heat Trans Part A 38(5):533CrossRefGoogle Scholar
  71. Wang CC, Lo J, Lin YT, Wei CS (2002) Flow visualization of annular and delta winlet vortex generators in fin-and-tube heat exchanger application. Int J Heat Mass Transf 45(18):3803–3815CrossRefGoogle Scholar
  72. Yakut K, Alemdaroglu N, Kotcioglu I, Celik C (2006) Experimental investigation of thermal resistance of a heat sink with hexagonal fins. Appl Therm Eng 26(17–18):2262–2271CrossRefGoogle Scholar
  73. Yang KS, Li SL, Chen IY, Chien KH, Hu R, Wang CC (2010a) An experimental investigation of air cooling thermal module using various enhancements at low Reynolds number region. Int J Heat Mass Transf 53:5675–5681CrossRefGoogle Scholar
  74. Yang KS, Jhong JH, Lin YT, Chien KH, Wang CC (2010b) On the heat transfer characteristics of heat sinks: with and without vortex generators. IEEE Trans Compon Packag Technol 33:391–397CrossRefGoogle Scholar
  75. Zhang Z (1989) Einflu8 von Deltafugel-Wirbelerzeugem auf Wiirmeiibergang und Druckverlust in Spaltstromungen. Dissertation, Ruhr-Universitiit BochumGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sujoy Kumar Saha
    • 1
  • Hrishiraj Ranjan
    • 1
  • Madhu Sruthi Emani
    • 1
  • Anand Kumar Bharti
    • 1
  1. 1.Mechanical Engineering DepartmentIndian Institute of Engineering, Science and Technology, ShibpurHowrahIndia

Personalised recommendations