Phytostabilization of Heavy Metals: Understanding of Principles and Practices

  • A. M. Shackira
  • Jos T. Puthur


Pollution with toxic metals causes severe menace to the ecosystem, and phytostabilization of heavy metals using green plants is nowadays receiving more consideration as it offers a cost-effective, eco-friendly technique, and moreover it is an aesthetically pleasing one. Plants which are native to the contaminated soil with dense root system (so as to retain large quantities of metal ions inside the root) and are able to self-propagate are considered as potential candidates for phytostabilization. Phytostabilization of toxic metal ions in the rhizosphere can be greatly enhanced by treating the soil with various organic and inorganic amendments which will modify the soil properties in order to amplify the availability of metals to the plants. The basic mechanism underlying phytostabilization is the complexation of metal ions with the root exudates/mucilage or with the cell walls and also binding with metal-binding molecules like phytochelatins and metallothioneins and finally sequestering them to the root vacuole. Physical stabilization of metal ions in the soil through phytostabilization has an added advantage of protecting the groundwater from heavy metal contamination as this technique prevents contaminant from getting leached into the deeper soil layers. Thus, phytostabilization offers a feasible alternative to the costly remediation practices and helps to restore a functional ecosystem which is otherwise polluted in a more substantial manner.


Detoxification Heavy metals Mine tailings Phytostabilization Soil amendments Wetlands 



SAM gratefully acknowledges the financial assistance from the Department of Science and Technology, New Delhi, India, through INSPIRE fellowship.


  1. Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224CrossRefGoogle Scholar
  2. Abreu MM, Magalhães MCF (2009) Phytostabilization of soils in mining areas. Case studies from Portugal. In: Aachen L, Eichmann P (eds) Soil Remediation. Nova Science Publishers Inc., New York, pp 297–344Google Scholar
  3. Abreu MM, Santos ES, Fernandes E, Batista MJ, Ferreira M (2011) Accumulation and translocation of trace elements in Cistus ladanifer L. from IPB Portuguese mining areas. Rev Ciênc Agrar 34:44–56Google Scholar
  4. Abreu MM, Santos ES, Ferreira M, Magalhães MCF (2012) Cistus salviifolius a promising species for mine wastes remediation. J Geochem Explor 113:86–93CrossRefGoogle Scholar
  5. Ahmad E, Zaidi A, Khan MS, Oves M (2012) Heavy metal toxicity to symbiotic nitrogen-fixing microorganism and host legumes. In: Zaidi A, Parvaze W, Khan A, Saghir M (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, WienGoogle Scholar
  6. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals: concepts and applications. Chemosphere 91:869–881PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alkorta I, Becerril JM, Garbisu C (2010) Phytostabilization of metal contaminated soils. Rev Environ Health 25:135–146PubMedCrossRefGoogle Scholar
  8. Alvarenga PM, Araújo MF, Silva JAL (2004) Elemental uptake and root-leaves transfer in Cistus ladanifer L. growing in a contaminated pyrite mining area (Aljustrel-Portugal). Water Air Soil Pollut 152:81–96CrossRefGoogle Scholar
  9. Alvarenga P, Gonçalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2009) Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Chemosphere 74:1292–1300PubMedCrossRefGoogle Scholar
  10. Anawar HM, Freitas MC, Canha N, Regina IS (2011) Arsenic, antimony, and other trace element contamination in a mine tailings affected area and uptake by tolerant plant species. Environ Geochem Health 33:353–362PubMedCrossRefGoogle Scholar
  11. Andreazza R, Okeke BC, Pieniz P, Brandelli A, Lambais MR, Camargo FAO (2011) Bioreduction of Cu (II) by cell-free copper reductase from a copper resistant Pseudomonas sp. NA. Biol Trace Elem Res 143:1182–1192PubMedCrossRefGoogle Scholar
  12. Baker AJM, Reeves RD, Mc Grath SP (1991) In situ decontamination of heavy metal polluted soils using crops of heavy metal accumulating plants-a feasibility study. In: Hinchee RE, Olfenbuttel RF, Heinemann B, Boston MA (eds) Abstracts of the international symposium on in situ and on-site bioreclamation. San Diego, California, pp 600–605Google Scholar
  13. Batista MJ, Abreu MM, Serrano Pinto M (2007) Biogeochemistry in Neves Corvo mining region Iberian Pyrite Belt, Portugal. J Geochem Explor 92:159–176CrossRefGoogle Scholar
  14. Baumann A, Verhalten von D (1885) Zinksatzen gegen Pflanzen und im Boden (M). Landwirtsch. Vers.-Statn 31:1–53Google Scholar
  15. Benson LM, Porter EK, Peterson PJ (1981) Arsenic accumulation, tolerance and genotypic variation in plants on arsenical mine wastes in SW England. J Plant Nutr 3:655–666CrossRefGoogle Scholar
  16. Bert V, Lors C, Laboudigue A et al (2008) Use of phytostabilisation to remediate metal polluted dredged sediment. International Symposium on Sediment Management (I2SM), Jul 2008, Lille, France. pp 275–279Google Scholar
  17. Berti WR, Cunnigham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 71–88Google Scholar
  18. Boisson S, Stradic SL, Collignon J, Séleck M, Malaisse F, Shutcha MN, Faucon M, Mahy G (2016) Potential of copper-tolerant grasses to implement phytostabilisation strategies on polluted soils in South DR Congo. Poaceae candidates for phytostabilization. Environ Sci Pollut Res 23:13693–13705CrossRefGoogle Scholar
  19. Bolan NS, Adriano DC, Natesan R, Koo BJ (2003) Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. J Environ Qual 32:120–128PubMedCrossRefGoogle Scholar
  20. Bringezu K, Lichtenberger O, Leopold I, Neumann D (1999) Heavy metal tolerance of Silene vulgaris. J Plant Physiol 154:536–546CrossRefGoogle Scholar
  21. Byers HG (1935) Selenium occurrence in certain soils in the United States with a discussion of related topics. USDA Tech Bull:482Google Scholar
  22. Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900PubMedCrossRefGoogle Scholar
  23. Castro R, Pereira S, Lima A et al (2009) Accumulation, distribution and cellular partitioning of mercury in several halophytes of a contaminated salt marsh. Chemosphere 76:1348–1355PubMedCrossRefGoogle Scholar
  24. Chaignon V, Hinsinger P (2002) Fe-deficiency increases Cu acquisition by wheat cropped in a Cu-contaminated vineyard soil. New Phytol 154:121–130CrossRefGoogle Scholar
  25. Chaignon V, Di Malta D, Hinsinger P (2002) Fe-deficiency increases Cu acquisition by wheat cropped in a Cu-contaminated vineyard soil. New Phytol 154:121–130CrossRefGoogle Scholar
  26. Chaney RL (1983) Plant uptake of inorganic waste. In: Parr JE, Marsh PB, Kla JM (eds) Land treatment of hazardous waste, Noyes Data Corp, Park Ridge II, pp 50–76Google Scholar
  27. Chen J, Yan Z, Li X (2014) Effect of methyl jasmonate on cadmium uptake and antioxidative capacity in Kandelia obovata seedlings under cadmium stress. Ecotoxicol Environ Saf 104:349–356PubMedCrossRefGoogle Scholar
  28. Chen J, Young SM, Allen C, Seeber A, Péli-Gulli MP, Panchaud N, Waller A, Ursu O, Yao T et al (2012) Identification of a small molecule yeast TORC1 inhibitor with a multiplex screen based on flow cytometry. ACS Chem Biol 7(4):715–722PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chipeng FK, Hermans C, Colinet G, Faucon MP, Ngongo M, Meerts P, Verbruggen N (2010) Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) PA Duvign.&Plancke. Plant Soil 328(1–2):235–244CrossRefGoogle Scholar
  30. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486PubMedCrossRefGoogle Scholar
  31. Clemensson-Lindell A, Borgegård SO, Persson H (1992) Reclamation of mine waste and its effects on plant growth and root development – a literature review. Swedish University of Agricultural Sciences. Report, p 47Google Scholar
  32. Cobbett C, Goldsbrough PB (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182PubMedCrossRefGoogle Scholar
  33. Colzi I, Arnetoli M, Gallo A, Doumett S, Del Bubba M, Pignattelli S, Gabbrielli R, Gonnelli C (2012) Copper tolerance strategies involving the root cell wall pectins in Silene paradoxa L. Environ Exp Bot 78:91–98CrossRefGoogle Scholar
  34. Cong M, Zhao J, Lü J, Ren Z, Wu H (2016) Homologous cloning, characterization and expression of a new halophyte phytochelatin synthase gene in Suaeda salsa. Chin J Ocean Limnol 34:1034–1043CrossRefGoogle Scholar
  35. Cox RM, Hutchinson TC (1980) Multiple metal tolerances in the grass Deschampsia cespitosa (L.) Beauv. From the Sudbury smelting area. New Phytol 84:631–647CrossRefGoogle Scholar
  36. Cox RM, Hutchinson TC (1981) Multiple and co-tolerance to metals in the grass Deschampsia caespitosa: adaptation, preadaptation and ‘cost’. J Plant Nutr 3:731–741CrossRefGoogle Scholar
  37. Cunningham SD, Berti WR, Huang WJ (1995) Remediation of contaminated soils and sludges by green plants. Bioremed Inorg 3:33–53Google Scholar
  38. Deivanai S, Thulasyammal R (2014) Phytostabilization potential of yard long bean in removing cadmium from soil. J Stress Physiol Biochem 10(2)Google Scholar
  39. Devi S, Nandwal AS, Angrish R, Arya SS, Kumar N, Sharma SK (2016) Phytoremediation potential of some halophytic species for soil salinity. Int J Phytoremediation 18:693–696PubMedCrossRefGoogle Scholar
  40. Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S et al (2016) The global spectrum of plant form and function. Nature 529:167–171. Scholar
  41. Domínguez-Cherit G, Lapinsky SE, Macias AE et al (2009) Critically ill patients with 2009 influenza a (H1N1) in Mexico. JAMA 302(17):1880–1887. Scholar
  42. Ehsan M, Delgado KS, Alarcon AV, Chavez AA, Landero ND, Contreras DJ, Molumeli PA (2009) Phtostabilization of cadmium contaminated soils by Lupinus uncinatus Schldl. Span J Agric Res 7:390–397CrossRefGoogle Scholar
  43. EPA (2000) Introduction to phytoremediation. U.S. Environmental Protection Agency, Washington, D.C, p 72Google Scholar
  44. Evans KG, Willgoose GR (2000) Post-mining landform evolution modelling: 2. Effects of vegetation and surface ripping. Earth Surf Proc Land 25:803–823CrossRefGoogle Scholar
  45. Filip Z (2002) International approach to assessing soil quality by ecologically- related biological parameters. Agric Ecosyst Environ 88:169–174CrossRefGoogle Scholar
  46. Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J Biotech 99:259–278CrossRefGoogle Scholar
  47. Ford KL, Walker M (2003) Abandoned mine waste repositories: site selection, design, and cost. Technical Note 410. Bureau of Land Management, DenverGoogle Scholar
  48. Freitas H, Prasad MNV, Pratas J (2004) Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: environmental implications. Environ Int 30:65–72PubMedCrossRefGoogle Scholar
  49. Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. As J Energy Env 6:214–231Google Scholar
  50. Grobelak A, Napora A (2015) The chemophytostabilisation process of heavy metal polluted soil. PLoS One 10:e0129538PubMedPubMedCentralCrossRefGoogle Scholar
  51. Guo P, Qi YP, Yang LT, Ye X, Jiang HX, Huang JH et al (2014) cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity. BMC Plant Biol 14:284. Scholar
  52. Hall J (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11CrossRefGoogle Scholar
  53. He LY, Zhang YF, Ma HY, Su LN, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl Soil Ecol 44:49–55CrossRefGoogle Scholar
  54. Henson TM, Cory W, Rutter MT (2013) Extensive variation in cadmium tolerance and accumulation among populations of Chamaecrista fasciculata. PLoS One 8:e63200PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hinsinger P (2001) Bioavailability of trace elements as related to root introduced chemical changes in the rhizosphereGoogle Scholar
  56. Hinsinger P, Plassard C, Jaillard B (2006) Rhizosphere: a new frontier for soil biogeochemistry. J Geochem Explor 88:210–213CrossRefGoogle Scholar
  57. Huang GY, Wang YS, Ying GG (2011) Cadmium-inducible BgMT2, a type 2 metallothionein gene from mangrove species (Bruguiera gymnorrhiza), its encoding protein shows metal-binding ability. J Exp Mar Biol Ecol 405:128–132CrossRefGoogle Scholar
  58. Huang GY, Wang YS (2010) Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in response to heavy metal stress. Aquat Toxicol 99:86–92PubMedCrossRefGoogle Scholar
  59. Janeeshma E (2015) Arbuscular mycorrhizal mediated phytostabilization and Cd2+/Zn2+ stress alleviation of Zea mays L. M. Sc theses submitted to University of Calicut, pp 1–63Google Scholar
  60. Jefferson LV (2004) Implications of plant density on the resulting community structure of mine site land. Restor Ecol 12:429–438CrossRefGoogle Scholar
  61. Jiang X, Wang C (2008) Zinc distribution and zinc-binding forms in Phragmites australis under zinc pollution. J Plant Physiol 165:697–704PubMedCrossRefGoogle Scholar
  62. Jiang W, Liu D (2010) Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol 10:40PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kalff J (2002) Limnology. Prentice Hall, Upper Saddle RiverGoogle Scholar
  64. Konno H, Nakashima S, Katoh K (2010) Metal-tolerant Scopelophila cataractae moss accumulates copper in the cell wall pectin of protonemata under copper-enriched conditions. J Plant Physiol 167:358–364PubMedCrossRefGoogle Scholar
  65. Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments: a review. Waste Manag 28:215–225PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kushwaha AR, Kumar RS, Gautam A (2015) Heavy metal detoxification and tolerance mechanisms in plants: implications for phytoremediation. Environ Rev 23:1–13CrossRefGoogle Scholar
  67. Lin Q, Chen YX, Chen HM, Zheng CM (2003) Study on chemical behavior of root exudates with heavy metals. Plant Nutr Fertil Sci 9:425–431Google Scholar
  68. Liu CW, Chen YY, Kao YH, Maji SK (2014) Bioaccumulation and translocation of arsenic in the ecosystem of the Guandu Wetland, Taiwan. Wetlands 34:129–140CrossRefGoogle Scholar
  69. Lombi E, Wenzel WW, Goran GR, Adriano DC (2001) Dependency of phytoavailability of metals on indigenous and induced rhizosphere processes: a review. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC Press, Boca Raton, pp 4–23Google Scholar
  70. Lone MI, He Z, Stoffella PJ, Yang X (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang University Sci B 9:210–220CrossRefGoogle Scholar
  71. Lutts S, Lefe’vre I (2015) How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Ann Bot:1–20Google Scholar
  72. Ma Y, Rajkumar M, Freitas H (2009) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75:719–725PubMedCrossRefGoogle Scholar
  73. MacFarlane GR, Pulkownik A, Burchett MD (2003) Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.) Vierh.: biological indication potential. Environ Pollut 123:139–151PubMedCrossRefGoogle Scholar
  74. Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Biol 68:1–13Google Scholar
  75. Małecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Accumulation of lead in root cells of Pisum sativum. Acta Physiol Plant 30:629–637CrossRefGoogle Scholar
  76. McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids and radionuclides. Adv Agron 75:1–56CrossRefGoogle Scholar
  77. Mench M, Bert V, Schwitzguébel JP, Lepp N, Schröder P, Gawronski S, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. J Soils Sediments 10:1039–1070CrossRefGoogle Scholar
  78. Mench M, Vangronsveld J, Lepp N et al (2006) Phytostabilisation of metal-contaminated sites. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils. Springer, Trest, pp 109–190CrossRefGoogle Scholar
  79. Mendez MO, Glenn EP, Maier RM (2007) Phytostabilization potential of quailbush for mine tailings: growth, metal accumulation, and microbial community changes. J Environ Qual 36:245–253PubMedCrossRefPubMedCentralGoogle Scholar
  80. Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments–an emerging remediation technology. Environ Health Perspect 116:278–283PubMedCrossRefGoogle Scholar
  81. Meng L, Guo Q, Mao P, Tian X (2013) Accumulation and tolerance characteristics of zinc in Agropyron cristatum plants exposed to zinc-contaminated soil. Bull Environ Contam Toxicol 91:298–301PubMedCrossRefGoogle Scholar
  82. Meyers DE, Kopittke PM, Auchterlonie GJ, Webb RI (2009) Characterization of lead precipitate following uptake by roots of Brassica juncea. Environ Toxicol Chem 28:250–255CrossRefGoogle Scholar
  83. Meyers DER, Auchterlonie GJ, Webb RI, Wood B (2008) Uptake and localisation of lead in the root system of Brassica juncea. Environ Pollut 153:323–332PubMedCrossRefGoogle Scholar
  84. Minguzzi C, Vergnano O (1948) Il contenuto di nichel nelle ceneri di Alyssum bertolonii. Atti Societa Toscana Scienze Naturali 55:49–74Google Scholar
  85. Moreno J, Fatela F, Leorri E, De la Rosa J, Pereira I, Araújo MF, Freitas MC, Corbett R, Medeiros A (2014) Marsh benthic for aminifera response to estuarine hydrological balance driven by climate variability over the last 2000 years (Minhoestuary, NW Portugal). Quat Res 82:318–330CrossRefGoogle Scholar
  86. Moshiri GA (1993) Constructed wetlands for water quality improvement. Lewis, Boca RatonGoogle Scholar
  87. Mummey DL, Stahl PD, Buyer JS (2002) Soil microbiological properties 20 years after surface mine reclamation: spatial analysis of reclaimed and undisturbed sites. Soil Biol Biochem 34:1717–1725CrossRefGoogle Scholar
  88. Nair A, Juwarkar AA, Devotta S (2008) Study of speciation of metals in an industrial sludge and evaluation of metal chelators for their removal. J Hazard Mater 152:545–553PubMedCrossRefGoogle Scholar
  89. Nedjimi B, Daoud Y (2009) Cadmium accumulation in Atriplex halimus subsp. Schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora 204:316–324CrossRefGoogle Scholar
  90. Notter M (1993) Metallerna och miljön (the metals and the environment). Report 4135. (in Swedish). Swedish Environmental Protection Agency, StockholmGoogle Scholar
  91. Padilla FM, Pugnaire FI (2006) The role of nurse plants in the restoration of degraded environments. Front Ecol Environ 4:196–202CrossRefGoogle Scholar
  92. Pahalawattaarachchi V, Purushothaman CS, Vennila A (2009) Metal phytoremediation potential of Rhizophora mucronata (Lam.). Indian J Mar Sci 38(2):178–183Google Scholar
  93. Paliouris G, Hutchinson TC (1991) Arsenic, cobalt and nickel tolerances in two populations of Silene vulgaris from Ontario, Canada. New Phytol 117:449–459CrossRefGoogle Scholar
  94. Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N et al (2011) Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J Hazard Mater 185:549–574PubMedPubMedCentralCrossRefGoogle Scholar
  95. Paulose B, Datta SP, Rattan RK, Chhonkar PK (2007) Effect of amendments on the extractability, retention and plant uptake of metals on a sewage-irrigated soil. Eniviron Pollut 146:19–24CrossRefGoogle Scholar
  96. Pelloux J, Rusterucci C, Mellerowicz EJ (2007) New insight into pectin methylesterase structure and function. Trends Plant Sci 12:267–277PubMedCrossRefGoogle Scholar
  97. Perez-de-Mora A, Burgos P, Madejon E, Cabrera F, Jaeckel P et al (2006) Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biol Biochem 38:327–341CrossRefGoogle Scholar
  98. Porter EK, Peterson PJ (1975) Arsenic accumulation by plants on mine wastes (United Kingdom). Sci Total Environ 4(4):365–371CrossRefGoogle Scholar
  99. Rascio N (1977) Metal accumulation by some plants growing on zinc-mine deposits. Oikos 29:250–253CrossRefGoogle Scholar
  100. Reevers RD, Baker A, Becquer T, Echewvarria G, Miranda ZJG (2007) The flora and biogeochemistry of the ultramafic soils of Goia’s State, Brazil. Plant Soil 293:107–119CrossRefGoogle Scholar
  101. Ruttens A, Mench M, Colpaert JV, Boisson J, Carleer R, Vangronsveld J (2006) Phytostabilization of a metal contaminated sandy soil. I: influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environ Pollut 144:524–532PubMedCrossRefGoogle Scholar
  102. Salt DE, Blaylock M, Kumar NPBA, Dusenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology (NY) 13:468–474Google Scholar
  103. Salt DE, Kato N, Kramer U, Smith RD, Raskin I (2000) The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press LLC, Boca Raton , pp 189–200Google Scholar
  104. Santibáñez C, Verdugo C, Ginocchio R (2008) Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Sci Total Environ 395:1–10PubMedCrossRefGoogle Scholar
  105. Santos ES, Abreu MM, Nabais C, Magalhães MCF (2012) Trace elements distribution in soils developed on gossan mine wastes and Cistus ladanifer L. tolerance and bioaccumulation. J Geochem Explor 123:45–51CrossRefGoogle Scholar
  106. Santos E, Abreu M, Macías F, Varennes A (2016) Chemical quality of leachates and enzymatic activities in Technosols with gossan and sulfide wastes from the São Domingos mine. J Soils Sediments 16:1366–1382CrossRefGoogle Scholar
  107. Shackira AM, Puthur JT (2017) Enhanced phytostabilization of cadmium by a halophyte - Acanthus ilicifolius L. Int J Phytoremediation 19:319–326PubMedCrossRefGoogle Scholar
  108. Shackira AM, Puthur JT, Nabeesa SE (2017) Acanthus ilicifolius L. a promising candidate for phytostabilization of zinc. Environ Monit Assess 189:1–13CrossRefGoogle Scholar
  109. Shutcha MN, Mubemba MM, Faucon MP, Luhembwe MN, Visser M, Colinet G, Meerts P (2010) Phytostabilisation of copper-contaminated soil in Katanga: an experiment with three native grasses and two amendment. Int J Phytoremediation 12:616–632PubMedCrossRefGoogle Scholar
  110. Solanki R, Dhankhar R (2011) Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66:195–204CrossRefGoogle Scholar
  111. Sricoth T, Meeinkuirt W, Saengwilai P, Pichtel J, Taeprayoon P (2018) Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments. Environ Sci Pollut Res Int 25:14964–14976PubMedCrossRefGoogle Scholar
  112. Stanczyk-Mazanek E, Sobik-Szoltysek J (2010) Investigation of accumulation of heavy metals in soils and flotation discards fertilized with selected sewage sludge. J Environ Stud 2:221–224Google Scholar
  113. Suresh B, Ravishankar GA (2004) Phytoremediation-a novel and promising approach for environmental clean-up. Critic Rev Biotech 24:97–124CrossRefGoogle Scholar
  114. Symeonidis L, McNeilly T, Bradshaw AD (1985) Differential tolerance of three cultivars of Agrostis capillaris L. to cadmium, copper, lead, nickel and zinc. New Phytol 101:309–315CrossRefGoogle Scholar
  115. USEPA (United States Protection Agency Reports) (2000) Introduction to phytoremediation. In: EPA 600/R-99/107Google Scholar
  116. USEPA (United States Protection Agency Reports) (2001) A citizen's guide to phytoremediation, in: US Environmental Protection Agency. In: Office of Solid Waste and Emergency Response EPA-542–F-01–002Google Scholar
  117. Usha B, Venkataraman G, Parida A (2009) Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show differences in binding to heavy metals in vitro. Mol Genet Genomics 281:99–108PubMedCrossRefGoogle Scholar
  118. Utsunomiya T (1980) Japanese patent application publication. Application number 55-72959. Kokai, pp 57–190Google Scholar
  119. van der Lelie D, Corbisier P, Diels L, Gilis A, Lodewyckx C, Mergeay M, Taghavi S, Spelmans N, Vangronsveld J (1999) The role of bacteria in the phytoremediation of heavy metals. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 265–281Google Scholar
  120. Varun M, D’souza R, Pratas J, Paul M (2011) Phytoextraction potential of Prosopis juliflora (Sw.) DC. with specific reference to lead and cadmium. Bull Environ Contam Toxicol 87:45–49. Scholar
  121. Vassilev A, Schwitzguébel J, Thewys T, Lelie D, Vangronsveld J (2004) The use of plants for remediation of metal contaminated soils. Sci World J 4:9–34CrossRefGoogle Scholar
  122. Weis J, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 169:737–745Google Scholar
  123. Wong MW (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780PubMedCrossRefGoogle Scholar
  124. Wu G, Hong H, Yan C (2015) Arsenic accumulation and translocation in mangrove (Aegiceras corniculatum L.) grown in arsenic contaminated soils. Int J Environ Res Public Health 12:7244–7253PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135PubMedCrossRefGoogle Scholar
  126. Xu JK, Yang LX, Wang YL, Wang ZQ (2005) Advances in the study uptake and accumulation of heavy metal in rice (Oryza sativa) and its mechanisms. Chin Bull Bot 22:614–622Google Scholar
  127. Yadav A, Batra NG, Sharma A (2016) Phytoremediation and phytotechnologies. Int J Pure App Biosci 4:327–331CrossRefGoogle Scholar
  128. Yoon J, Cao XD, Zhou QX, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464PubMedCrossRefGoogle Scholar
  129. Zeng P, Guo Z, Cao X, Xiao X, Liu Y, Shi L (2018) Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. Int J Phytoremediation 20:311–320PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. M. Shackira
    • 1
  • Jos T. Puthur
    • 1
  1. 1.Plant Physiology and Biochemistry Division, Department of BotanyUniversity of CalicutKeralaIndia

Personalised recommendations