Molecular Breeding for Resistance to Economically Important Diseases of Fodder Oat

  • Pawan Saini
  • Mudasir Gani
  • Pooja Saini
  • Javaid Akhter Bhat
  • Rose Mary Francies
  • Narender Negi
  • S. S. Chauhan


Oat (Avena sp. L.) is a hardy cereal crop belonging to Poaceae family, which is valued high for its dietary qualities and fodder. Like other cereals, this crop is also subjected to a number of diseases that may damage/totally destroy oat fields. Out of all the diseases, crown rust, stem rust, powdery mildew, Fusarium head blight, leaf blotch, smut and barley yellow dwarf virus (BYDV) are of great significance in oat. These diseases tend to cause severe yield losses and are responsible for progressive decline in oat production at global level. As in other crops, the most effective, ideal and economical method for reducing disease losses in oats is the development and cultivation of disease-resistant varieties. Several genes conferring resistance to major diseases of oats have been identified in the oat gene pool. But introgression of desired resistant genes using traditional approaches is time consuming and many a time indecisive owing to multiple genes involved. However, with the advent of DNA markers, marker-assisted selection (MAS) shows promise to carry out effective and speedy selection of genotype with desirable gene giving a huge impetus to resistance breeding in oat. Furthermore, genomics and improved bioinformatics tools are helpful in the study of genotype × environmental interaction (G × E) and have revolutionized the breeding for disease resistance in the crop. The opportunity for oat breeders to develop disease-resistant varieties by planned and effective utilization of oat genetic resources through integration of the traditional breeding methodologies with the modern genomics-assisted breeding (GAB) methodologies is vast and yet to be exploited to its full potential.


Oat Disease Genomics-assisted breeding  Resistant varieties  Crop improvement 


  1. Acevedo M, Jackson EW, Chong J, Rines HW, Harrison S, Bonman JM (2010) Identification and validation of quantitative trait loci for partial resistance to crown rust in oat. Phytopthal 100:511–521Google Scholar
  2. Ahmad M, Gul-Zaffer Dar ZA, Habib M (2014) A review on Oat (Avena sativa L.) as a dual-purpose crop. Sci Res Essays 9(4):52–59Google Scholar
  3. Asoro FG, Newell MA, Scott MP, Beavis WD, Jannink JL (2013) Genome-wide association study for beta-glucan concentration inelite North American oat. Crop Sci 53:542–553. Scholar
  4. Babiker EM, Gordon TC, Jackson EW, Chao S, Harrison SA, Carson ML, Obert DE, Bonman JM (2015) Quantitative trait loci from two genotypes of oat (Avena sativa) conditioning resistance to Puccinia coronata. Phytopathology 105:239–245PubMedGoogle Scholar
  5. Bai GH, Shaner G, Ohm H (1991) Effects of moist period on response of wheat cultivars to infection by Fusarium graminearum. (Abstract). Phytopathology 81:1145–1146Google Scholar
  6. Boczkowska M, Podyma W, Lapinski B (2016) Oat. In: Singh M, Upadhyaya HD (eds) Genetic and genomic resources for cereal improvement, pp 159–225. Scholar
  7. Boffetta P, Thies F, Kris-Etherton P (2014) Epidemiological studies of oats consumption and risk of cancer and overall mortality. Br J Nutr 112:S14–S18PubMedGoogle Scholar
  8. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331PubMedPubMedCentralGoogle Scholar
  9. Brown PD, Forsberg RA, McKenzie RIH, Martens JW (1986) The use of disomic alien addition lines in the transfer of stem rust resistance to hexaploids oat. In: Lawes DA, Thomas H (eds) World crops production, utilization and description. Processings of second international oat conference. Martinus, Nijhoff Publishers, Dordrecht, pp 16–20Google Scholar
  10. Burrows VD (1986) Tibor oat. Can J Plant Sci 66:403–405Google Scholar
  11. Bush AL, Wise RP (1996) Crown rust resistance loci on linkage groups 4 and 13 in cultivated oat. J Hered 87:427–432Google Scholar
  12. Bush AL, Wise RP (1998) High-resolution mapping adjacent to the Pc71 crown-rust resistance locus in hexaploid oat. Mol Breed 4:13–21Google Scholar
  13. Bush AL, Wise RP, Rayapati PJ, Lee M (1994) Restriction fragment length polymorphisms linked to genes for resistance to crown rust (Puccinia coronata) in near isogenic lines of hexaploid oat (Avena sativa). Genome 37:823–831PubMedGoogle Scholar
  14. Cabral AL, Singh D, Park RF (2011) Identification and genetic characterisation of adult plant resistance to crown rust in diploid and tetraploid accessions of Avena. Ann Appl Biol 159:220–228Google Scholar
  15. Carson M (2008) Virulence frequencies in oat crown rust in the United States from 2001 through 2005. Plant Dis 92:379–384PubMedGoogle Scholar
  16. Carson ML (2009) Crown rust development and selection for virulence in Puccinia coronata f. sp. avenae in an oat multiline cultivar. Plant Dis 93:347–353PubMedGoogle Scholar
  17. Chaffin AS, Huang YF, Smith S, Bekele WA, Babikar E, Gnanesh BN et al (2016) A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial sub-genome rearrangement. Plant Genome 9. Scholar
  18. Chang HC, Huang CN, Yeh DM, Wang SJ, Peng CH, Wang CJ (2013) Oat prevents obesity and abdominal fat distribution, and improves liver function in humans. Plant Foods Hum Nutr 68:18–23PubMedGoogle Scholar
  19. Chen G, Chong J, Gray M, Prashar S, Procunier JD (2004) Single nucleotide polymorphisms as next generation markers for high throughput screening for crown rust resistance in oat. In: Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th international oat conference, Helsinki, p 86.
  20. Chen G, Chong J, Gray M, Prashar S, Procunier JD (2006a) Identification of single-nucleotide polymorphisms linked to resistance gene Pc68 to crown rust in cultivated oat. Can J Plant Pathol 28:214–222Google Scholar
  21. Chen J, He J, Wildman RP, Reynolds K, Streiffer RH, Whelton PK (2006b) A randomized controlled trial of dietary fiber intake on serum lipids. Eur J Clin Nutr 60:62–68PubMedGoogle Scholar
  22. Chen G, Chong J, Prashar S, Procunier JD (2007) Discovery and genotyping of high-throughput SNP markers for crown rust resistance gene Pc94 in cultivated oat. Plant Breed 126:379–384Google Scholar
  23. Cheng DW, Armstrong KC, Tinker N, Wight CP, He S, Lybaert A, Fedak G, Molnar SJ (2002) Genetic and physical mapping of Lrk10-like receptor kinase sequences in hexaploid oat (Avena sativa L.). Genome 45:100–109PubMedGoogle Scholar
  24. Chong J, Howes NK, Brown PD, Harder DE (1994) Identification of the stem rust resistance gene Pg9 and its association with crown rust resistance and endosperm proteins in ‘Dumont’ oat. Genome 37(3):440–447PubMedGoogle Scholar
  25. Chong J, Leonard KJ, Salmeron JJ (2000) A North American system of nomenclature for Puccinia coronata f. sp. avenae. Plant Dis 84:580–585PubMedGoogle Scholar
  26. Chong J, Reimer E, Somers D, Aung T, Penner GA (2004) Development of sequence-characterized amplified region (SCAR) markers for resistance gene Pc94 to crown rust in oat. Can J Plant Pathol 26:89–96Google Scholar
  27. Chong J, Gruenke J, Dueck R, Mayert W, Fetch JM, McCartney C (2011) Virulence of Puccinia coronata f. sp. avenae in the Eastern Prairie Region of Canada during 2007–2009. Can J Plant Pathol 33:77–87Google Scholar
  28. Clifford BC (1995) Diseases, pests and disorders of oats. In: Welch RW (ed) The oat crop: production and utilization. Chapman & Hall, London, pp 252–278Google Scholar
  29. Coffman FA (ed) (1961) Oats and oat improvement. American Society of Agronomy, MadisonGoogle Scholar
  30. Correns C (1900) G. Mendels Regel tiber das Verhalten der Nachkommenschaft der Rassenbastarde. Berdeutsch botan Gesellsch 18:158–168Google Scholar
  31. de Vries H (1900) Das Spaltungsgesetz der Bastarde (Vorlaufige Mitteilung). Ber deutsch bot Ges 18:83–90Google Scholar
  32. Dhillon BS, Chhuneja P (2014) New initiatives for precision plant breeding. In: National symposium on crop improvement for inclusive sustainable development, 7th–9th November, 2014. PAU, Ludhiana, pp 9–16Google Scholar
  33. Egeberg R, Olsen A, Loft S, Christensen J, Johnsen NF, Overvad K, Tjønneland A (2010) Intake of whole grain products and risk of colorectal cancers in the diet, cancer and health cohort study. Br J Cancer 103:730–734PubMedPubMedCentralGoogle Scholar
  34. Ellis MB (1971) Dematiaceous hyphomycetes. Kew, CAB, 608 ppGoogle Scholar
  35. FAO (2013) FAOSTAT database. Agricultural crops: wheat: area harvested/yield. URL
  36. FAO (2015) FAOSTAT database. Agricultural crops: wheat and oat: prices (USD/ton). URL
  37. Fetch J, Fetch T (2011) Inheritance of resistance to oat stem rust in the cultivars Ronald and AC Gwen. Can J Plant Sci 91(2):419–423Google Scholar
  38. Fetch TG Jr (2005) Races of Puccinia graminis on wheat, barley, and oat in Canada in 2002 and 2003. Can J Plant Pathol 27:572–580Google Scholar
  39. Fitzgerald TL, Kazan K, Li Z, Morell MK, Manners JM (2010) A high-throughput method for the detection of homologous gene deletions in hexaploid wheat. BMC Plant Biol 10:264PubMedPubMedCentralGoogle Scholar
  40. Floor HH (1956) The complementary genetic systems in flax and flax rust. Adv Genet 8:29–54Google Scholar
  41. Forsberg RA, Brinkman MA, Bunch RA, Duerst RD (1991a) Registration of Horicon oat. Crop Sci 31:1087–1088Google Scholar
  42. Forsberg RA, Brinkman MA, Karow RS, Duerst RD (1991b) Registration of Centennial oat. Crop Sci 31:1087–1087Google Scholar
  43. Frey KJ (1985) Genetic resources and their use in oats breeding. In: Proceedings of the 2nd international oats conference, 15–18 July 1985, Aberystwyth, pp 7–15Google Scholar
  44. Frey KJ (1991) Genetic resources of oats. In: Shands HL, Wiesner L (eds) Use of plant introductions in cultivar development Part-I, CSSA Special Publication No. 17. Crop Science Society of America, Madison, pp 15–24Google Scholar
  45. Frey KJ, Browning JA (1976a) Registration of multiline M72 and multiline M73 oat cultivars. Crop Sci 16:311Google Scholar
  46. Frey KJ, Browning JA (1976b) Registration of multiline M72, multiline M73 and multiline M74 oat cultivars. Crop Sci 16:311–312Google Scholar
  47. Frey KJ, Browning JA, Grindeland RL (1971a) Registration of multiline E68, multiline E69 and multiline E70 oat cultivars. Crop Sci 11:939–940Google Scholar
  48. Frey KJ, Browning JA, Grindeland RL (1971b) Registration of multiline M68, multiline M69 and multiline M70 oat cultivars. Crop Sci 11:940–941Google Scholar
  49. Frey KJ, Browning JA, Grindeland RL (1973) Registration of X117 oat germplasm. Crop Sci 13:290Google Scholar
  50. Frey KJ, Browning JA, Simons MD (1985) Registration of multiline E76 and multiline E77 oats. Crop Sci 25:1125Google Scholar
  51. Frey KJ, Simons MD, Michel LJ, Murphy JP, Browning JA (1988) Registration of Webster oat isolines as parental lines. Crop Sci 28:386–387Google Scholar
  52. Gagkaeva T, Gavrilova O, Yli-Mattila T, Loskutov I (2011) Evaluation of oat germplasm for resistance to fusarium head blight. Plant Breed Seed Sci 64:15–22Google Scholar
  53. Germeier CU (2008) Global strategy for the ex situ conservation for oats (Avena spp.).
  54. Gnanesh BN, Fetch JM, Menzies JG, Beattie AD, Eckstein PE, McCartney CA (2013) Chromosome location and allele-specific PCR markers for marker-assisted selection of the oat crown rust resistance gene Pc91. Mol Breed:1–8. Scholar
  55. Gnanesh BN, Fetch JM, Zegeye T, McCartney CA, Fetch T (2014) Oat. In: Pratap A, Kumar J (eds) Alien gene transfer in crop plants, vol 2. Springer, New York, pp 51–73Google Scholar
  56. Gnanesh BN, McCartney CA, Eckstein PE, Fetch JWM, Menzies JG, Beattie AD (2015) Genetic analysis and molecular mapping of a seedling crown rust resistance gene in oat. Theor Appl Genet 128:247–258PubMedGoogle Scholar
  57. Gorash A, Armoniene R, Fetch JM, Liatukas Ž, Danyte V (2017) Aspects in oat breeding: nutrition quality, nakedness and disease resistance, challenges and perspectives. Ann Appl Biol:1–22Google Scholar
  58. Groh S, Zacharias A, Kianian SF, Penner GA, Chong J, Rines HW, Phillips RL (2001) Comparative AFLP mapping in two hexaploid oat populations. Theor Appl Genet 102:876–884Google Scholar
  59. Gurung S, Mamidi S, Bonman JM, Xiong M, Brown-Guedira G, Adhikari TB (2014) Genome-wide association study reveals novel quantitative trait loci associated with resistance to multiple leaf spot diseases of spring wheat. PLoS One 9:e108179. Scholar
  60. Handbook of Agriculture (2007) Forage crops and grasses. pp 1354–1357Google Scholar
  61. Harder DE, Haber S (1992) Oat diseases and pathologic techniques. In: Marshall HG, Sorrells ME (eds) Oat science and technology. Crop Science Society of America, Madison, pp 307–402. [Agronomy Monograph, No. 33]Google Scholar
  62. Harder DE, McKenzie RIH (1984) Complex additive-type of resistance to Puccinia coronata in Avena sterilis. Can J Plant Pathol 6:135–138Google Scholar
  63. Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517Google Scholar
  64. Harlan HY, Pope MN (1922) The use and value of backcrosses in small grain breeding. J Hered 13:319–322Google Scholar
  65. Hasm SLK, Mohler V, Zeller FJ (2014) The genetics of resistance to powdery mildew in cultivated oats (Avena sativa L.): current status of major genes. J Appl Genet. Scholar
  66. Ho HVT (2015) The effect of oat and barley 𝛽-glucan on LDL-C and emerging clinical lipid targets for cardiovascular disease. PhD Thesis, Toronto, Canada: University of TorontoGoogle Scholar
  67. Hoffman DL, Chong J, Jackson EW, Obert DE (2006) Characterization and mapping of a crown rust resistance gene complex (Pc58) in TAM O-301. Crop Sci 46:2630–2635Google Scholar
  68. Holland JB (1997) Oat improvement. In: Crop improvement for the 21st century. Journal paper no. J-16942 of the Iowa Agriculture and Home Economics Experiment Station, Ames. Project no.3368, pp 57–98Google Scholar
  69. Hou Q, Li Y, Li L, Cheng G, Sun X, Li S, Tian H (2015) The metabolic effects of oats intake in patients with type 2 diabetes: a systematic review and meta-analysis. Nutrients 7:10369–10387PubMedPubMedCentralGoogle Scholar
  70. Howes NK, Chong J, Brown PD (1992) Oat endosperm proteins associated with resistance to stem rust of oats. Genome 35:120–125Google Scholar
  71. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967. Scholar
  72. Hunter H (1924) Oats: their varieties and characteristics. Ernest Benn, LondonGoogle Scholar
  73. IPCC (2007) Climate change — the physical sciences basis: summary for policymakers. Intergovernmental Panel on Climate Change, Genebra 18Google Scholar
  74. Irigoyen ML, Loarce Y, Fominaya A, Ferrer E (2004) Isolation and mapping of resistance gene analogs from the Avena strigosa genome. Theor Appl Genet 109:713–724PubMedGoogle Scholar
  75. Irigoyen ML, Loarce Y, Friero E, Fominaya A, Ferrer E (2006) Identification of resistance gene analogs as markers of disease resistance loci in oats, using near-isogenic lines. Plant Breed 125(4):347–351. Scholar
  76. Ivanoff SS (1963) The cause of spikelet drop of oats. Plant Dis Rep 3:206–207Google Scholar
  77. Ivanov P (2006) Trends for the production of oats in the world, the European Union and Bulgeria. Magzine Agronomist. 25–26Google Scholar
  78. Jackson EW, Obert DE, Menz M, Hu G, Avant JB, Chong J, Bonman JM (2007) Characterization and mapping of oat crown rust resistance genes using three assessment methods. Phytopathology 97(9):1063–1070PubMedGoogle Scholar
  79. Jackson EW, Obert DE, Menz M, Hu G, Bonman JM (2008) Qualitative and quantitative trait loci conditioning resistance to Puccinia coronata pathotypes NQMG and LGCG in the oat (Avena sativa L.) cultivars Ogle and TAM O-301. Theor Appl Genet 116:517–527PubMedGoogle Scholar
  80. Janseen NF (1952) Intra-varietal diversification in oat breeding. Agron J 44:30–34Google Scholar
  81. Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H, Zhu C, Lu Y, Zhou C, Fan D, Weng Q, Guo Y, Huang T, Zhang L, Lu T, Feng Q, Hao H, Liu H, Lu P, Zhang N, Li Y, Guo E, Wang S, Wang S, Liu J, Zhang W, Chen G, Zhang B, Li W, Wang Y, Li H, Zhao B, Li J, Diao X, Han B (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45:957–961. Scholar
  82. Jin H, Domier LL, Kolb FL, Brown CM (1998) Identification of quantitative loci for tolerance to barley yellow dwarf virus in oat. Phytopathology 88:410–415PubMedGoogle Scholar
  83. Jin H, Domier LL, Kolb FL, Brown CM (1999) Conversion of AFLP markers associated with BYDV tolerance in oats to non-radioactive PCR markers. In: Plant and animal genome VII Conference, San Diego, p 396.
  84. Johannsen WL (1903) Ueber Erblichkeit in Population en und in reinen Leinen. Gustav Fischer, JenaGoogle Scholar
  85. Kapoor R, Batra C (2016) Oats. In: Singh M, Kumar S (eds) Broadening the genetic base of grain cereals, pp 127–162. Scholar
  86. Kianian SF, Egli MA, Phillips RL, Rines HW, Somers DA, Gengenbach BG, Webster FH, Livingston SM, Groh S, O’-Donoughue LS, Sorrells ME, Wesenberg DM, Stuthman DD, Fulcher RG (1999) Association of a major groat oil content QTL and an acetyl-CoA carboxylase gene in oat. Theor Appl Genet 98:884–894Google Scholar
  87. Kianian SF, Phillips RL, Rines HW, Fulcher RG, Webster FH, Stuthman DD (2000) Quantitative trait loci influencing β-glucan content in oat (Avena sativa, 2n = 6x = 42). Theor Appl Genet 101:1049–1055Google Scholar
  88. Klos KE, Yimer BA, Babikar EM, Beattie AD, Bonman JM, Carson ML, Chong J, Harrison SA, Ibrahim AMH, Kolb FL, McCartney CA, McMullen M, Fetch JM, Mohammadi M, Murphy JP, Tinker NA (2017) Genome-wide association mapping of crown rust resistance in oat elite germplasm. Plant Genome 10(2). Scholar
  89. Kremer CA, Lee M, Holland JB (2001) A restriction fragment length polymorphism based linkage map of a diploid Avena recombinant inbred line population. Genome 44:192–204PubMedGoogle Scholar
  90. Kulcheski FR, Graichen FAS, Martinelli JA, Locatelli AB, Federizzi LC, Delatorre CA (2010) Molecular mapping of Pc68, a crown rust resistance gene in Avena sativa. Euphytica 175:423–432Google Scholar
  91. Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168. Scholar
  92. Ladizinsky G (1998) A new species of Avena from Sicily, possible the tetraploid progenitor of hexaploid oats. Genet Resour Crop Evol 45:263–269Google Scholar
  93. Ladizinsky G, Zohary D (1971) Notes on species delimitation, species relationships and polyploidy in Avena L. Euphytica 20:380–395Google Scholar
  94. Landry B, Comeau A, Minvielle F, St-Pierre CA (1984) Genetic analysis of resistance to barley yellow dwarf virus in hybrids between Avena sativa Lamer and virus resistant lines of Avena sterilis. Crop Sci 24:337–340Google Scholar
  95. Lawes DA, Hayes JD (1965) The effect of mildew (Erysiphe graminis f.sp. avenae) on spring oats. Plant Pathol 14:125–128Google Scholar
  96. Lawson P, Son (1852) Synopsis of the vegetable products of Scotland in the museum of the Royal Botanic Gardens of Kew. Cereal Grains - Avena or oat. Private Press of Peter Lawson and Son, pp 79–95Google Scholar
  97. Leggett JM, Thomas H (1995) Oat evolution and cytogenetics. In: Welch W (ed) The oat crop: production and utilization. Chapman & Hall, London, pp 121–149Google Scholar
  98. Li H, Peng Z, Yang X, Wang W, Fu J, Wang J et al (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45:43–50. Scholar
  99. Lin Y, Gnanesh BN, Chong J, Chen G, Beattie AD, Fetch JWM, Kutcher HR, Eckstein PE, Menzies JG, Jackson EW, McCartney CA (2014) A major quantitative trait locus conferring adult plant partial resistance to crown rust in oat. BMC Plant Biol 14:250PubMedPubMedCentralGoogle Scholar
  100. Linnaeus С (1753) A facsimile of the first edition. In: Species plantarum, vol 1, London, pp 1957–1959Google Scholar
  101. Loarce Y, Sanz MJ, Irigoyen ML, Fominaya A, Ferrer E (2009) Mapping of STS markers obtained from oat resistance gene analog sequences. Genome 52:608–619PubMedGoogle Scholar
  102. Loskutov I, Rines H (2011) Avena. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg, pp 109–183Google Scholar
  103. Love HH (1927) A program for selecting and testing small grains in successive generations following hybridization. J Am Soc Agron 19:705–712Google Scholar
  104. Marshall HG, Shaner GE (1992) Genetics and inheritance in oat. In: Marshall HG, Sorrells ME (eds) Oat science and technology, agronomy monograph number 33. American Society of Agronomy and Crop Science Society of America, Madison, pp 509–571Google Scholar
  105. Marshall HG, Sorrells ME (1992) Oat science and technology, Agron Monogr 33. ASA and CSSA, Madison, WIGoogle Scholar
  106. Martens JW, McKenzie RIH, Harder DE (1980) Resistance to Puccinia graminis avenae and P. coronata avenae in the wild and cultivated Avena populations of Iran, Iraq and Turkey. Can J Genet Cytol 22:641–649Google Scholar
  107. Martens JW, Rothman PG, McKenzie RIH, Brown PD (1981) Evidence for complementary gene action conferring resistance to Puccinia graminis avenae in Avena sativa. Can J Genet Cytol 23:591–595Google Scholar
  108. Martens JW, Seaman WL, Atkinson TG (1985) Diseases of field crops. In: Canada: an illustrated compendium. Canadian Phytopathological Society, Harrow, 160 ppGoogle Scholar
  109. Mathews REF (1982) Classification and nomenclature of plant viruses. Intervirology 17(1–3):76–91Google Scholar
  110. Mathias-Ramwell M, Salvo-Garrido H, Reyes-Rebolledo M, Montenegro-Barriga A (2016) Júpiter-INIA: a new oat variety with improved β-glucan and protein contents. Chilean J Agric Sci 76(4):401–408Google Scholar
  111. Mattsson B (1988) The development of oat germplasm at Svalov. In: Mattsson B, Lyhagen L (eds) Proceedings of 3rd international oat conference, 4–8 July 1988, Lund, pp 35–38Google Scholar
  112. McCallum BD, Fetch T, Chong J (2007) Cereal rust control in Canada. Aus J Agric Res 58:639–647Google Scholar
  113. Mccartney CA, Stonehouse RG, Roseenagel BG, Eckstein PE, Scoles GJ, Zatorski T, Beattie AD, Chong J (2011) Mapping of the oat crown rust resistance gene Pc91. Theor Appl Genet 122:317–325PubMedGoogle Scholar
  114. McDaniel ME (1974a) Registration of TAM 0-301 oats. Crop Sci 14:127–128Google Scholar
  115. McDaniel ME (1974b) Registration of TAM 0-312 oats. Crop Sci 14:128Google Scholar
  116. McKenzie RIH, Martens JW, Brown PD, Harder DE, Nielsen J, Boughton GR (1981) Registration of Fidler oats. Crop Sci 21:632–633Google Scholar
  117. McKenzie RIH, Brown PD, Harder DE, Chong J, Nielsen J, Gill CC, Boughton GR (1984) Registration of Dumont oats. Crop Sci 24:207Google Scholar
  118. McKenzie RIH, Brown PD, Harder DE, Chong J, Nielsen J, Haber S, Martens JW, Noll JS, Boughton GR (1986) Registration of Riel oat. Crop Sci 26:1256Google Scholar
  119. McMullen MS, Patterson FL (1992) Oat cultivar development in the U.S.A. and Canada. In: Sorrells ME, Marshall HG (eds) Oat science and technology. Agronomy monograph No. 33. ASA, CSSA, SSSA, Madison, pp 573–612Google Scholar
  120. Mellen PB, Walsh TF, Herrington DM (2008) Whole grain intake and cardiovascular disease: a meta-analysis. Nutr Metab Cardiovasc Dis 18:283–290PubMedGoogle Scholar
  121. Menda N, Semel Y, Peled D, Eshed Y, Zamir D (2004) In silico screening of a saturated mutation library of tomato. Plant J 38:861–872PubMedGoogle Scholar
  122. Menon R, Gonzalez T, Ferruzzi M, Jackson E, Winder D, Watson J (2016) Oats – from farm to fork. Adv Food Nutr Res 77:1–55PubMedGoogle Scholar
  123. Mesterhazy A (1987) Selection of head blight resistant wheat though improved seedling resistance. Plant Breed 98:23–36Google Scholar
  124. Montilla-Bascón G, Rispail N, Sánchez-Martín J, Rubiales D, Mur LAJ, Langdon T, Howarth CJ, Prats E (2015) Genome-wide association study for crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) resistance in an oat (Avena sativa) collection of commercial varieties and landraces. Front Plant Sci 6:103PubMedPubMedCentralGoogle Scholar
  125. Morris GP, Ramub P, Deshpandeb SP, Hashc CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown JP, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci U S A 110:453–458. Scholar
  126. Murphy JP, Hoffman LA (1992) The origin, history, and production of oat. In: Marshall HG, Sorrells ME (eds) Oat science and technology. American Society of Agronomy, Madison, pp 1–28Google Scholar
  127. Nevo E, Golenberg E, Beilies A, Brown AHD, Zohary D (1982) Genetic diversity and environmental association of wild wheat, Triticum diococcoides in Israel. Theor Appl Genet 62:241–254PubMedGoogle Scholar
  128. Newell MA, Asoro FG, Scott MP, White PJ, Beavis WD, Jannink JL (2012) Genome-wide association study for oat (Avena sativa L.) beta-glucan concentration using germplasm of worldwide origin. Theor Appl Genet 125:1687–1696. Scholar
  129. Newman LH (1912) Plant breeding in Scandinavia. Canadian Seed Growers, OttawaGoogle Scholar
  130. Norton JB (1907) Notes on breeding oats. Proceedings American Breeders’ Association 3:280–285Google Scholar
  131. Nwachukwu ID, Devassy JG, Aluko RE, Jones PJH (2015) Cholesterol-lowering properties of oat 𝛽-glucan and the promotion of cardiovascular health: did Health Canada make the right call? Appl Physiol Nutr Metabol 40:535–542Google Scholar
  132. O’Donoughue LS, Wang Z, Röder M, Kneen B, Leggett M, Sorrells ME, Tanksley SD (1992) An RFLP-based linkage map of oats based on a cross between two diploid taxa (Avena atlantica × A. hirtula). Genome 35:765–771Google Scholar
  133. O’Donoughue LS, Kianian SF, Rayapati PJ, Penner GA, Sorrells ME, Tanksley SD, Phillips RL, Rines HW, Lee M, Fedak G, Molnar SJ, Hoffman D, Salas CA, Wu B, Autrique E, VanDeynze A (1995) A molecular linkage map of cultivated oat. Genome 38:368–380PubMedGoogle Scholar
  134. O’Donoughue LS, Chong J, Wight CP, Fedak G, Molnar SJ (1996) Localization of stem rust resistance genes and associated molecular markers in cultivated oat. Phytopathology 86:719–727Google Scholar
  135. Oat Breeding Newsletter (October, 2018) pp 1–53. [Online: Available:]
  136. Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43Google Scholar
  137. Oerke EC, Dehne HW, Schönbeck F, Weber A (1994) Crop production and crop protection. Estimated losses in major foodand cash crops. Elsevier, AmsterdamGoogle Scholar
  138. Ohm HW, Shaner G, Buechley G, Aldridge WG, Bostwick DE, Ratcliffe RH (1995) Registration of IN09201 spring oat. Crop Sci 35:940Google Scholar
  139. Okon SM (2015) Effectiveness of resistance genes to powdery mildew in oat. Crop Prot 74:48–50. Scholar
  140. Okon SM, Ociepa T (2017) Virulence structure of the Blumeria graminis DC. f. sp. avenae populations occurring in Poland across 2010–2013. Eur J Plant Pathol 149:1–8. Scholar
  141. Okon SM, Ociepa T (2018) Effectiveness of new sources of resistance against oat powdery mildew identified in A. sterilis. J Plant Dis Prot 125:505–510Google Scholar
  142. Okon SM, da Paczos-Grze E, Ociepa T et al (2016) Avena sterilis L. Genotypes as a potential source of resistance to oat powdery mildew. Plant Dis 100:2145–2151. Scholar
  143. Okon S, Ociepa T, Nucia A (2018) Molecular identification of Pm4 powdery mildew resistant gene in oat. Not Bot Horti Agrobo 46(2):350–355Google Scholar
  144. Pal N, Sandhu JS, Domier LL, Kolb FL (2002) Development and characterization of microsatellite and RFLP-derived PCR markers in oat. Crop Sci 42:912–918Google Scholar
  145. Penner GA, Bush A, Wise R, Kim W, Dormier L, Kasha K, Laroche A, Scoles G, Molnar SJ, Fedak G (1993a) Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories. PCR Methods Appl 2:341–345PubMedGoogle Scholar
  146. Penner GA, Chong J, Levesque-Lemay M, Molnar SJ, Fedak G (1993b) Identification of a RAPD marker linked to the oat stem rust gene Pg3. Theor Appl Genet 85:702–705PubMedGoogle Scholar
  147. Penner GA, Chong J, Wight CP, Molnar SJ, Fedak G (1993c) Identification of an RAPD marker for the crown rust resistance gene Pc68 in oats. Genome 36:818–820PubMedGoogle Scholar
  148. Peterson DM (2001) Oat antioxidants. J Cereal Sci 33:115–129Google Scholar
  149. Peturson B (1944) Adult plant resistance of some oat varieties to physiologic races of crown rust. Can J Res Sci 22:287–289Google Scholar
  150. Poehlman JM, Kingsolver CH (1950) Disease reaction and agronomic qualities of oats selections from a Columbia × Victoria-Richland cross. Agron J 42:498–502Google Scholar
  151. Portyanko VA, Chen G, Rines HW, Phillips RL, Leonard KJ, Ochocki GE, Stuthman DD (2005) Quantitative trait loci for partial resistance to crown rust, Puccinia coronata, in cultivated oat, Avena sativa L. Theor Appl Genet 111:313–324PubMedGoogle Scholar
  152. Priebe MG, van Binsbergen JJ, de Vos R, Vonk RJ (2008) Whole grain foods for the prevention of type 2 diabetes mellitus. Cochrane Database Syst Rev 1.
  153. Rajhathy T, Thomas H (1974) Cytogenetics of oats, vol 2. (Miscellaneous Publication) Genetics Society of Canada, Ottawa, pp 1–90Google Scholar
  154. Rasane P, Jha A, Sabikhi L, Kumar A, Unnikrishnan VS (2015) Nutritional advantages of oats and opportunities for its processing as value added foods – a review. J Food Sci Technol 52:662–675PubMedGoogle Scholar
  155. Rayapati PJ, Gregory JW, Lee M, Wise RP (1994) A linkage map of diploid Avena based on RFLP loci and a locus conferring resistance to nine isolates of Puccinia coronata var. avenae. Theor Appl Genet 89:831–837PubMedGoogle Scholar
  156. Reinbergs E (1983) OAC Woodstock oats. Can J Plant Sci 63:543–544Google Scholar
  157. Rigola D, van Oeveren J, Janssen A, Bonne A, Schneiders H, van der Poel HJ, van Orsouw NJ, Hogers RC, de Both MT, van Eijk MJ (2009) High throughput detection of induced mutations and natural variation using KeyPoint technology. PLoS One 4:e4761PubMedPubMedCentralGoogle Scholar
  158. Rines HW, Molnar SJ, Tinker NA, Phillips RL (2006) Oat. In: Kole C (ed) Genome mapping and molecular breeding in plants, Volume 1 Cereals and Millets. Springer, New York, pp 211–242Google Scholar
  159. Rines HW, Miller ME, Carson M, Chao S, Tiede T, Wiersma J, Kianian SF (2017) Identification, introgression, and molecular marker genetic analysis and selection of a highly effective novel oat crown rust resistance from diploid oat, Avena strigosa. Theor Appl Genet. Scholar
  160. Ronald PS, Penner GA, Brown PD, Brule-Babel A (1997) Identification of RAPD markers for percent hull in oat. Genome 40:873–878PubMedGoogle Scholar
  161. Rooney WL, Rines HW, Phillips RL (1994) Identification of RFLP markers linked to crown rust resistance genes Pc 91 and Pc 92 in oat. Crop Sci 34:940–944Google Scholar
  162. Rose O (1903) Der F1ugbrand der Sommergetreidesaaten und Massnahmen zur Bekampfung dieses Pilzes in der landwirtschaftIichen Praxis. Inaugural Diss, RostockGoogle Scholar
  163. Rothman PG (1976) Registration of oat germplasm. Crop Sci 16:315Google Scholar
  164. Rothman PG (1984) Registration of four stem rust and crown rust resistant oat germplasm lines. Crop Sci 24:1217–1218Google Scholar
  165. Rothman PG (1986) Adequate rust resistance in oats. In: Lawes DA, Thomas H (eds) World crops: production, utilization and description. In: Proceedings of second international oat conference. Martinus, Nijhoff Publishers, Dordrecht, pp 72–76Google Scholar
  166. Rubiales D, Niks RE (2000) Combination of mechanisms of resistance to rust fungi as a strategy to increase durability. Options Méditérr 40:333–339Google Scholar
  167. Sanz MJ, Loarce Y, Fominaya A, Vossen JH, Ferrer E (2012) Identification of RFLP and NBS/PK profiling markers for disease resistance loci in genetic maps of oats. Theor Appl Genet 126:203–218PubMedGoogle Scholar
  168. Satheeskumar S, Sharp PJ, Lagudah ES, McIntosh RA, Molnar SJ (2011) Genetic association of crown rust resistance gene Pc68, storage protein loci, and resistance gene analogues in oats. Genome 54:484–497PubMedGoogle Scholar
  169. Schroeder HW, Christensen JJ (1963) Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831–838Google Scholar
  170. Schuster J, Beninca G, Vitorazzi R, Bosco SMD (2015) Effects of oats on lipid profile, insulin resistance and weight loss. Nutr Hosp 32:2111–2116PubMedGoogle Scholar
  171. Sebesta J, Kuhn F (1990) Avena fatua L. subsp. fatua v. glabrata Peterm. subv. Pseudo basifixa Thele. as a source of crown rust resistance genes. Euphytica 50:51–55Google Scholar
  172. Sebesta J, Harder DE, Jones IT, Kummer M, Clifford BC, Zwatz B (1986) Pathogenicity of crown rust, stem rust and powdery mildew on oats in Europe and sources of resistance. In: Lawes DA, Thomas H (eds) World crops: production, utilization and description. Processings of second international oat conference. Martinus, Nijhoff Publishers, Dordrecht, pp 67–71Google Scholar
  173. Sharma DC, Forsberg RA (1977) Spontaneous and induced interspecific gene transfer for crown rust resistance in Avena. Crop Sci 17:855–860Google Scholar
  174. Shebini El SM, Moaty MI, Tapozada ST, Ahmed NH, Mohamed MS, Hanna LM (2014) Effect of whole wheat (Triticum aestivum) and oat (Avena sativa) supplements on body weight, insulin resistance and circulating omentin in obese women exhibiting metabolic syndrome criteria. World J Med Sci 11:373–338Google Scholar
  175. Sheppherd JH (1896) Grain and forage crops. North Dakota Agric Exp Station Bull 23:31–54Google Scholar
  176. Shirreff P (1873) Improvement of the cereals. Cereals: 1–26. William Blackwood and Sons, EdinburghGoogle Scholar
  177. Simons MD (1985) Crown rust. In: Rolfs AP, Bushnell WR (eds) The Cereal rusts: diseases, distribution, epidemiology, and control. Academic Press, New York, pp 131–172Google Scholar
  178. Simons MD, Michel LJ, Frey KJ (1987) Registration of three oat germplasm lines resistant to the crown rust fungus. Crop Sci 27:369Google Scholar
  179. Siripoonwiwat W, O’Donoughue LS, Wesenberg D, Hoffman DL, Barbosa-Neto JF, Sorrells ME (1996) Chromosomal regions associated with quantitative traits in oat. J Agric Genome,
  180. Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed 123:1–8. Scholar
  181. Stakman EC, Harrar JG (1957) Principles of plant pathology. Ronald Press, New YorkGoogle Scholar
  182. Stevens NE, Scott WO (1950) How long will present spring oat varieties last in the central corn belt? Agron J 42:307–309Google Scholar
  183. Stewart D, McDougall G (2014) Oat agriculture, cultivation and breeding targets: implications for human nutrition and health. Br J Nutr 112:S50–S57PubMedGoogle Scholar
  184. Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116PubMedGoogle Scholar
  185. Stuthman DD, Wilcoxson RD, Rines HW (1990) Registration of Starter oat. Crop Sci 30:1365–1366Google Scholar
  186. Stuthman DD, Stage J, Rines H, McVey D (1995) Milton. Oat Newsletter 43:74Google Scholar
  187. Talamè V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol J 6:477–485Google Scholar
  188. Tapola N, Karvonen H, Niskanen L, Mikola M, Sarkkinen E (2005) Glycemic responses of oat bran products in type 2 diabetic patients. Nutr Metab Cardiovasc Dis 15:255–261PubMedGoogle Scholar
  189. Teng PS (ed) (1987) Crop loss assessment and pest management. APS Press, St PaulGoogle Scholar
  190. Teng PS, Krupa SV (eds) (1980). Assessment of losses which constrain production and crop improvement in agriculture and forestry. In: Proceedings of the E. C. Stackman Commemorative Symposium. St. Paul: University of MinnesotaGoogle Scholar
  191. Thies F, Masson LF, Boffetta P, Kris-Etherton P (2014) Oats and CVD risk markers: a systematic literature review. Br J Nutr 112:S19–S30PubMedGoogle Scholar
  192. Thomas H, Powell W, Aung T (1980) Interfering with regular meiotic behavior in Avena sativa as a method of incorporating the gene for mildew resistance from Avena barbata. Euphytica 29:635–640Google Scholar
  193. Tschermak E (1900) Ober kiinstliche Kreuzung bei Pisum sativum. Ber.deutsch.botan. Gesellsch 18:232–239Google Scholar
  194. Vanden Broeck HC, Londono DM, Timmer R, Smulders MJM, Gilissen LJWJ, Vander Meer IM (2016) Profiling of nutritional and health-related compounds in oat varieties. FoodReview 5:1–11Google Scholar
  195. Vander Plank JE (1963) Plant diseases: epidemics and control. Academic Press, New YorkGoogle Scholar
  196. Wallwork H (1992) Cereal leaf and stem diseases. Grains Research and Development Corporation, Barton, 102pGoogle Scholar
  197. Wang C, Yang Y, Yuan X, Xu Q, Feng Y, Yu H et al (2014) Genome-wide association study of blast resistance in indica rice. BMC Plant Biol 14:311. Scholar
  198. Warren HL, Kommedahl T (1973) Fertilization and wheat refuse affects on Fusarium species associated with wheat roots in Minnesota. Phytopathology 63:103–108Google Scholar
  199. Watkins JE, Lane LC (2004) Barley yellow dwarf disease of barley, oats, and wheat. In: NebGuide. University of Nebraska.
  200. Watson IA (1970) The utilization of wild species in the breeding of cultivated crops resistant to plant pathogens. In: Frankel OH, Bennett E (eds) Genetic resources in plants: their exploitation and conservation. IBP Handbook No. 11. Oxford, Blackwell, pp 441–457Google Scholar
  201. Wiese MV (1987) Scab (head blight). In: Compendium of wheat diseases, 2nd edn. American Phytopathological Society, St. Paul, pp 16–18Google Scholar
  202. Wight CP, O’Donoughue LS, Chong J, Tinker NA, Molnar SJ (2004) Discovery, localization, and sequence characterization of molecular markers for the crown rust resistance gene Pc38, Pc39, and Pc48 in cultivated oat (Avena sativa L.). Mol Breed 14:349–361Google Scholar
  203. Winkler LR, Bonman JM, Chao S, Yimer BA, Bockelman H, Esvelt Klos K (2016) Population structure and genotype–phenotype associations in a collection of oat landraces and historic cultivars. Front Plant Sci.
  204. Wise RP, Lee M, Rayapati PJ (1996) Recombination within a 5-centimorgan region in diploid Avena reveals multiple specificities conferring resistance to Puccinia coronata. Phytopathology 86:340–346Google Scholar
  205. Xue LH, Li CJ, Zhao GQ (2017) First report of powdery mildew caused by Blumeria graminis on Avena sativa in China. Plant Dis 101:1954. Scholar
  206. Yu J, Herrmann M (2006) Inheritance and mapping of a powdery mildew resistance gene introgressed from Avena macrostachya in cultivated oat. Theor Appl Genet 113:429–437PubMedGoogle Scholar
  207. Yu GX, Wise RP (2000) An anchored AFLP- and retrotransposon-based map of diploid Avena. Genome 43:736–749PubMedGoogle Scholar
  208. Zdunczyk Z, Flis M, Zielinski H, Wroblewska M, Antoszkiewicz Z, Juskiewicz J (2006) In vitro antioxidant activities of barley, husked oat, naked oat, triticale and buckwheat wastes and their influence on the growth and biomarkers of antioxidant status in rats. J Agric Food Chem 54:4168–4175PubMedGoogle Scholar
  209. Zegeye T (2008) Stem rust resistance in Avena strigosa Schreb.: inheritance, gene transfer, and identification of an amplified fragment length polymorphism (AFLP) marker. Ph. D. Thesis, University of ManitobGoogle Scholar
  210. Zhang X, McGeoch SC, Megson IL, MacRury SM, Johnstone AM, Abraham P, Pearson DWM, deRoos B, Holtrop G, O’Kennedy N, Lobley GE (2014) Oat-enriched diet reduces inflammatory status assessed by circulating cell-derived microparticle concentrations in type 2 diabetes. Mol Nutr Food Res 58:1322–1332PubMedGoogle Scholar
  211. Zhu S, Kaeppler HF (2003a) A genetic linkage map for hexaploid, cultivated oat (Avena sativa L.) based on an intraspecific cross ‘Ogle/MAM17-5’. Theor Appl Genet 107:26–35PubMedGoogle Scholar
  212. Zhu S, Kaeppler HF (2003b) Identification of quantitative trait loci for resistance to crown rust in oat line MAM17-5. Crop Sci 43:358–366Google Scholar
  213. Zillinsky FJ (1983) Common diseases of small grain cereals: a guide to identification. CIMMYT, Mexico, D.F, 141pGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pawan Saini
    • 1
  • Mudasir Gani
    • 1
  • Pooja Saini
    • 2
  • Javaid Akhter Bhat
    • 3
  • Rose Mary Francies
    • 4
  • Narender Negi
    • 5
  • S. S. Chauhan
    • 1
  1. 1.CSB-Central Sericultural Research & Training Institute (CSR&TI)PamporeIndia
  2. 2.Department of BiotechnologyEternal UniversityBaru SahibIndia
  3. 3.School of BiotechnologySher-e-Kashmir University of Agricultural Sciences & Technology of JammuChathaIndia
  4. 4.Kerala Agricultural UniversityVellanikara, ThrissurIndia
  5. 5.ICAR-National Bureau of Plant Genetic Resources (NBPGR), Regional Station – PhagliShimlaIndia

Personalised recommendations