Advertisement

Molecular Breeding for Resistance to Economically Important Diseases of Pulses

  • Parmeshwar K. Sahu
  • Vinod J. Dhole
  • Suvendu Mondal
Chapter

Abstract

Pulses are an important part of human diet due to their high protein content relative to staple cereals. Pulses play an important role in agriculture by contributing toward food and nutritional security, nitrogen economy, crop intensification, diversification, and sustainable farming systems. They are usually grown in marginal soils, and huge losses of these precious pulses occurred due to different disease-causing microorganisms. Disease resistance in plant manifested due to specific interaction between a resistance gene product in host and an avirulence gene product in pathogen. In some cases, pathogens take opportunity to enter hosts by exploiting some favorable avenues (also called susceptibility factors) in the host. Mutation in those susceptibility factors can also lead to resistant reaction. Most of the pulse crops faced tremendous yield penalties due to diseases caused by various kinds of pathogens, viz., virus, bacteria, fungus, and pathogenic weed species, etc. Genetic resistance against those pathogens in pulse crops has been identified and well characterized. Before the onset of genome sequencing drive in these crops, plant breeders have developed molecular markers for some disease resistance. In the era of genomics and available genome sequences in major pulses, development of breeder-friendly markers got a momentum among the pulse researchers across the globe. The utilization of these markers in marker-assisted selection is being practiced in few pulse crops till now. In this chapter, we will have a glance on different diseases of important temperate and tropical pulse crops, marker information on the disease resistance, and exploitation of genomics and markers toward breeding and varietal development. This chapter will also focus on different disease screening methodologies and provide an outlook on future research prospects toward improvement of pulse for disease resistance.

Keywords

Disease resistance R gene Molecular markers Marker-assisted selection Screening for resistance 

Abbreviations

AFLP

Amplified Fragment Length Polymorphism

BC

Backcross

BSA

Bulked Segregant Analysis

DAF

DNA Amplification Fingerprinting

DArT

Diversity Arrays Technologies

DHL

Doubled Haploid Lines

ELISA

Enzyme-Linked Immunosorbent Assay

EST

Expressed Sequence Tags

GWAS

Genome-Wide Association Studies

ICRISAT

International Crops Research Institute for the Semi-Arid Topics

InDel

Insertion-Deletion

ISSR

Inter Simple Sequence Repeat

MAB

Marker-Assisted Breeding

MABC

Marker-Assisted Backcrossing

MAGIC Population

Multiparent Advanced Generation Intercross Population

MAS

Marker-Assisted Selection

NAM Population

Nested Association Mapping Population

NIL

Near-Isogenic Lines

PCR

Polymerase Chain Reaction

QTL

Quantitative Trait Loci

RAPD

Random Amplified Polymorphic DNA

RFLP

Restriction Fragment Length Polymorphism

RGC

Resistance Gene Candidates

RIL

Recombinant Inbred Lines

SCAR

Sequence-Characterized Amplified Region

SNP

Single Nucleotide Polymorphism

SRAP

Sequence-Related Amplified Polymorphism

SSR

Simple Sequence Repeat

STMS

Sequence-Tagged Microsatellite Sites

STS

Sequence-Tagged Sites

TRAP

Target Region Amplification Polymorphism

Notes

Acknowledgments

The authors sincerely acknowledge the encouragement from the Associate Director (A), Bioscience Group, and Head of Nuclear Agriculture and Biotechnology Division of Bhabha Atomic Research Centre.

Conflict of Interest

The authors of this chapter declare that there are no conflict of interest and no financial gain from it.

References

  1. Adam-Blondon AF, Sevignac M, Bannerot H, Dron M (1994) SCAR, RAPD and RFLP markers linked to a dominant gene (Are) conferring resistance to anthracnose in common bean. Theor Appl Genet 88:865–870PubMedGoogle Scholar
  2. Agbicodo EM, Fatokun CA, Bandyopadhyay R, Wydra K, Diop NN, Muchero W, Ehlers JD, Roberts PA, Close TJ, Visser RGF, van der Linden CG (2010) Identification of markers associated with bacterial blight resistance loci in cowpea [Vigna unguiculata (L.) Walp.]. Euphytica 175:215–226Google Scholar
  3. Ammavasai S, Phogat DS, Solanki IS (2004) Inheritance of resistance to mungbean yellow mosaic virus (MYMV) in green gram (Vigna radiata L. Wilczek). Ind J Genet 64:146Google Scholar
  4. Anbessa Y, Tara’n B, Warkentin TD, Tullu A, Vandenberg A (2009) Genetic analyses and conservation of QTL for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Theor Appl Genet 4:757–765Google Scholar
  5. Andargie M, Pasquet RS, Gowda BS, Muluvi GM, Timko MP (2011) Construction of a SSR-based genetic map and identification of QTLs for yield and domestication traits using recombinant inbred lines from a cross between wild X cultivated cowpea (V. unguiculata (L.) Walp.). Mol Breed 28:413–420Google Scholar
  6. Andrahennadi CP (1994) Genetic linkage of isozyme markers and resistance to seed borne Ascochyta infection in lentil. M.Sc Thesis, Department of Crop Science and Plant Ecology, University of Saskatchewan, SK., CanadaGoogle Scholar
  7. Anjum T, Gupta SK, Datta S (2010) Mapping of Mungbean Yellow Mosaic India Virus (MYMIV) and powdery mildew resistant gene in black gram [Vigna mungo (L.) Hepper]. Elect J Plant Breed 1(4):1148–1152Google Scholar
  8. Arumuganathan K, Earle DE (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218Google Scholar
  9. Aryamanesh N, Nelson MN, Yan G, Clarke HJ, Siddique KHM (2010) Mapping a major gene for growth habit and QTLs for Ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum. Euphytica 173:307–319Google Scholar
  10. Atienza SG, Palomino C, Gutiérrez N, Alfaro CM, Rubiales D, Torres AM, Ávila CM (2016) QTLs for ascochyta blight resistance in faba bean (Vicia faba L.): validation in field and controlled conditions. Crop Pasture Sci 67(2):216–224Google Scholar
  11. Avila CM, Sillero JC, Rubiales D, Moreno MT, Torres AM (2003) Identification of RAPD markers linked to the Uvf-1 gene conferring hypersensitive resistance against rust (Uromuces viciae-fabae) in Vicia Faba L. Theor Appl Genet 107:353–358PubMedGoogle Scholar
  12. Bai Y, Michaels TE, Pauls KP (1997) Identification of RAPD markers linked to common bacterial blight resistance genes in Phaseolus vulgaris L. Genome 40:544–551PubMedGoogle Scholar
  13. Barilli E, Satovic Z, Rubiales D, Torres AM (2010) Mapping of quantitative trait loci controlling partial resistance against rust incited by Uromyces pisi (Pers.) Wint. in a Pisum fulvum L. intraspecific cross. Euphytica 175:151–159Google Scholar
  14. Barman P, Handique AK, Tanti B (2014) Tagging STMS markers to Fusarium wilt race-1 resistance in chickpea (Cicer arietinum L.). Indian J Biotechnol 13:370–375Google Scholar
  15. Basak J, Kundagrami S, Ghose TK, Pal A (2004) Development of yellow mosaic virus (YMV) resistance linked DNA marker in Vigna mungo from populations segregating for YMV reaction. Mol Breed 14:375–383Google Scholar
  16. Bassi D, Briñez B, Rosa JS, Oblessuc PR, Almeida CP, Nucci SM, Silva LCD, Chiorato AF, Vianello PR, Camargo LEA, Blair MW, Lasry L, Reis B (2017) Linkage and mapping of quantitative trait loci associated with angular leaf spot and powdery mildew resistance in common beans. Genet Mol Biol 40(1):109–122PubMedPubMedCentralGoogle Scholar
  17. Beebe S (2012) Common bean breeding in the tropics. In: Janick J (ed) Plant breeding reviews 36. Wiley, Hoboken, pp 357–426Google Scholar
  18. Benko-Iseppon AM, Winter P, Huettel B, Staginnus C, Muehlbauer FJ, Kahl G (2003) Molecular markers closely linked to Fusarium resistance genes in chickpea show significant alignments to pathogenesis-related genes located on Arabidopsis chromosomes 1 and 5. Theor Appl Genet 107:379–386PubMedGoogle Scholar
  19. Bhadauria V, Ramsay L, Bett KE, Banniza S (2017) QTL mapping reveals genetic determinants of fungal disease resistance in the wild lentil species Lens ervoides. Sci Rep 7:3231PubMedPubMedCentralGoogle Scholar
  20. Blair MW, Rodriguez LM, Pedraza F, Morales F, Beebe S (2007) Genetic mapping of the bean golden mosaic geminivirus resistant gene Bgm-1 and linkage with potyvirus resistance in common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374Google Scholar
  21. Boersma JG, Conner RL, Balasubramanian PM, Yu K, Hou A (2013) Marker-assisted dissection of anthracnose resistance in the dry bean cultivar Morden003. Can J Plant Sci 93:1115–1123Google Scholar
  22. Bohra A, Dubey A, Saxena RK, Penmetsa RV, Poornima KN, Kumar N et al (2011) Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea (Cajanus spp.). BMC Plant Biol 11:56PubMedPubMedCentralGoogle Scholar
  23. Bohra A, Saxena RK, Gnanesh BN, Saxena KB, Byregowda M, Rathore A et al (2012) An intra-specific consensus genetic map of pigeonpea [Cajanus cajan (L.) Millspaugh] derived from six mapping populations. Theor Appl Genet 125:1325–1338PubMedPubMedCentralGoogle Scholar
  24. Boukar O, Kong L, Singh BB, Murdock L, Ohm HW (2004) AFLP and AFLP-derived SCAR markers associated with Striga gesnerioides resistance in cowpea. Crop Sci 44:1259–1264Google Scholar
  25. Boukar O, Fatokun CA, Huynh BL, Roberts PA, Close TJ (2016) Genomic tools in cowpea breeding programs: status and perspectives. Front Plant Sci 7:757.  https://doi.org/10.3389/fpls.2016.00757CrossRefPubMedPubMedCentralGoogle Scholar
  26. Bretag TW, Keane PJ, Price TV (2006) The epidemiology and control of ascochyta blight in field peas: a review. Aust J Agr Res 57:883–902Google Scholar
  27. Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.) – model food legumes. Plant Soil 252:55–128Google Scholar
  28. Carrillo E, Boucherot K, Satovic Z, Rubiales D, PAubert G, Fondevilla S (2014) Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea. Plant Cell Rep 33:1133–1145PubMedGoogle Scholar
  29. Castro P, Pistón F, Madrid E, Millán T, Gil J, Rubio J (2010) Development of chickpea near-isogenic lines for fusarium wilt. Theor Appl Genet 121:1519–1526PubMedGoogle Scholar
  30. Chankaew S, Somta P, Sorajjapinun W, Srinives P (2011) Quantitative trait loci mapping of Cercospora leaf spot resistance in mungbean, Vigna radiata (L.) Wilczek. Mol Breed 28:255–264Google Scholar
  31. Chen W, Muehlbauer FJ (2003) An improved technique for virulence assay of Ascochyta rabiei on chickpea. Intl Chickpea Pigeonpea Newslett 10:31–33Google Scholar
  32. Chen W, Coyne CJ, Peever TL, Muehlbauer FJ (2004) Characterization of chickpea differentials for pathogenicity assay of ascochyta blight and identification of chickpea accessions resistant to Didymella rabiei. Plant Pathol 53:759–769Google Scholar
  33. Chen HM, Liu CA, Kuo CG, Chein CM, Sun HC, Huang CC, Lin YC, Ku HM (2007) Development of a molecular marker for a bruchid (Callosobruchus chinensis L.) resistance gene in mungbean. Euphytica 157:113–122Google Scholar
  34. Chen HM, Ku HM, Schafleitner R., Bains TJ, Kuo CG, Liu CA, Nair R (2013) The major quantitative trait locus for mungbean yellow mosaic Indian virus resistance is tightly linked in repulsion phase to the major bruchid resistance locus in a cross between mungbean (Vigna radiata (L.) Wilczek) and its wild relative Vigna radiata ssp. sublobata. Euphytica 192:215–216Google Scholar
  35. Chetukuri A, Gaur PM, Pande S, Gali KK, Ganesh M, Kumar J, Varshney RK (2011) Mapping QTL for resistance to botrytis grey mould in chickpea. Euphytica 182:1–9Google Scholar
  36. Cho SH, Chen WD, Muehlbauer FJ (2004) Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theor Appl Genet 109:733–739PubMedGoogle Scholar
  37. Choudhary N, Bawa V, Paliwal R, Singh B, Bhat A, Mir JI, Gupta M, Sofi PA, Thudi M, Varshney RK, Mir RR (2018) Gene/QTL discovery for Anthracnose in common bean (Phaseolus vulgaris L.) from North-western Himalayas. PLoS One 13(2):e0191700PubMedPubMedCentralGoogle Scholar
  38. Choudhury MA, Andrahennadi CP, Slinkard AE, Vandenberg A (2001) RAPD and SCAR markers for resistance to ascochyta blight in lentil. Euphytica 118:331–337Google Scholar
  39. Cobos MJ, Fernandez M, Rubio J, Kharat M, Moreno MT, Gil J, Millan T (2005) A linkage map of chickpea (Cicer arietinum L.) based on populations from Kabuli x Desi crosses: location of genes for resistance to Fusarium wilt race 0. Theor Appl Genet 110:1347–1353PubMedGoogle Scholar
  40. Cobos MJ, Winter P, Kharrat M, Cubero JI, Gil J, Millan T, Rubio J (2009) Genetic analysis of agronomic traits in a wide cross of chickpea. Field Crop Res 111:130–136Google Scholar
  41. Collard BCY, Pang ECK, Ades PK, Taylor PWJ (2003) Preliminary investigation of QTLs associated with seedling resistance to ascochyta blight from Cicer echinospermum, a wild relative of chickpea. Theor Appl Genet 107:719–729PubMedGoogle Scholar
  42. Daba K, Deokar A, Banniza S, Warkentin TD, Taran B (2016) QTL mapping of early flowering and resistance to ascochyta blight in chickpea. Genome 59:413–425PubMedGoogle Scholar
  43. Dasgroux A, L’Anthoëne V, Roux-Duparque M, Rivière J-P, Aubert G et al (2016) Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea. BMC Genomics 17:124Google Scholar
  44. Daspute A, Fakrudin B, Bhairappanavar SB, Kavil SP, Narayana YD, Muniswamy Kaumar A, Krishnaraj PU, Yerimani A, Khadi BM (2014) Inheritance of pigeonpea sterility mosaic disease resistance in pigeonpea. Plant Pathol J 30:188–194PubMedPubMedCentralGoogle Scholar
  45. Daspute A, Fakrudin B (2015) Identification of coupling and repulsion phase DNA marker associated with an allele of a gene conferring host plant resistance to pigeonpea sterility mosaic virus (PPSMV) in pigeonpea (Cajanus cajan L. Millsp.). Plant Pathol J 31:33–40PubMedPubMedCentralGoogle Scholar
  46. Davidson JA, Hartley D, Priest M, Herdina MKK, McKay A, Scott ES (2009) A new species of Phoma causes ascochyta blight symptoms on field peas (Pisum sativum) in South Australia. Mycologia 101:120–128PubMedGoogle Scholar
  47. Dhole VJ, Reddy KS (2013) Development of a SCAR marker linked with a MYMV resistance gene in mungbean (Vigna radiata L. Wilczek). Plant Breed 132:127–132Google Scholar
  48. Díaz-Ruiz R, Satovic Z, Ávila CM, Alfaro CM, Gutierrez MV, Torres AM, Román B (2009) Confirmation of QTLs controlling Ascochyta fabae resistance in different generations of faba bean (Vicia faba L.). Crop Pasture Sci 60:353–361Google Scholar
  49. Dikshit HK, Singh A, Singh D, Aski M, Jain N, Hegde VS, Basandrai AK, Basandrai D, Sharma TR (2016) Tagging and mapping of SSR markers for rust resistance gene in lentil (Lens culinaris Medik sub sp. culinaris) Ind. J Exp Bot 54:394–399Google Scholar
  50. Dirlewanger E, Isaac PG, Ranade S, Beldeaux M, Cousin R, deVienne D (1994) Restriction fragment length polymorphism analysis of loci with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet 88:17–27PubMedGoogle Scholar
  51. Ek M, Eklund M, Von Post R, Dayteg C, Henriksson T, Weibull P, Ceplitis A, Isaac P, Tuvesson S (2005) Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas 142:86–91PubMedGoogle Scholar
  52. Eujayl I, Erskine W, Bayaa B, Baum M, Pehu E (1998) Fusarium vascular wilt in lentil: inheritance and identification of DNA markers for resistance. Plant Breed 117:497–499Google Scholar
  53. Fall AL, Byrne PF, Jung G, Coyne DP, Brick MA, Schwartz HF (2001) Detection and mapping of a major locus for Fusarium wilt resistance in common bean. Crop Sci 41:1494–1498Google Scholar
  54. Fang JG, Chao CT, Roberts PA, Ehlers JD (2007) Genetic diversity of cowpea (Vigna unguiculata) in four West African and USA breeding programme as determined by AFLP analysis. Genet Resour Crop Evol 54:1197–1209Google Scholar
  55. FAO (2016) In: Lucrezia C, Ronald V, Liesi W (eds) Soil and Pulses Symbiosis for Life. Food and Agriculture Organization of the United Nations, Rome. ISBN 978-92-5-109501-0.Google Scholar
  56. Fatokun CA, Danesh D, Menancio-Hautea DI, Young ND (1993) A linkage map for cowpea [Vigna unguiculata (L) Walp] based on DNA markers (2n = 22). In: O’Brien JS (ed) Genetic maps 1992. A compilation of linkage and restriction maps of genetically studied organisms. Cold Spring Harbor Laboratory Press, Cold Spring Harbour, pp 6256–6258Google Scholar
  57. Fondevilla S, Carver TLWQ, Moreno MT, Rubiales D (2006) Macroscopic and histological characterization of gene er1 and er2 for powdery mildew resistance in pea. Eur J Plant Pathol 115:309–321Google Scholar
  58. Fondevilla S, Torres AM, Moreno MT, Rubiales D (2007) Identification of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea. Breed Sci 57:181–184Google Scholar
  59. Fondevilla S, Satovic Z, Rubiales D, Moreno MT, Torres AM (2008) Mapping of quantitative trait loci for resistance to Ascochyta pinodes in Pisum sativum subsp. syriacum. Mol Breed 21:439–454Google Scholar
  60. Fondevilla S, Küster H, Krajinski F, Cubero JI, Rubiales D (2011) Identification of genes differentially expressed in a resistant reaction to Ascochyta pinodes in pea using microarray technology. BMC Genomics 12:28PubMedPubMedCentralGoogle Scholar
  61. Ford R, Pang ECK, Taylor PWJ (1999) Genetics of resistance to ascochyta blight of lentil and the identification of closely linked markers. Theor Appl Genet 98:93–98Google Scholar
  62. Frew TJ, Russell AC, Timmerman-Vaughan GM (2002) Sequence tagged site markers linked to the smb1 gene for resistance to pea seed borne mosaic virus in pea. Plant Breed 121:512–516Google Scholar
  63. Ganapathy KN, Byregowda M, Venkatesh SC, Ramachandra R, Gnanesh BN, Girish G (2009) Identification of AFLP markers linked to sterility mosaic disease in pigeonpea Cajanus cajan (L.) Millsp. Int J Integr Biol 7:145–149Google Scholar
  64. Garg T, Mallikarjuna BP, Samineni S, Singh S, Sandhu JS, Kaur L, Singh I, Sirari A, Basandrai AK, Basandrai D, Varshney RK, Gaur PM (2018) Identification of QTLs for resistance to Fusarium wilt and Ascochyta blight in a recombinant inbred population of chickpea (Cicer arietinum L.). Euphytica 214:45.  https://doi.org/10.1007/s10681-018-2125-3CrossRefGoogle Scholar
  65. Ghafoor A, McPhee K (2012) Marker assisted selection (MAS) for developing powdery mildew resistant pea cultivars. Euphytica 186:593–607Google Scholar
  66. Ghosh R, Tarafdar A, Sharma M (2017) Rapid and sensitive diagnoses of dry root rot pathogen of chickpea (Rhizoctonia bataticola (Taub.) Butler) using loop-mediated isothermal amplification assay. Sci Rep 7:42737PubMedPubMedCentralGoogle Scholar
  67. Gioi TD, Boora KS, Chaudhary K (2012) Identification and characterization of SSR markers linked to yellow mosaic virus resistance genes in cowpea (Vigna unguiculata). Int J Plant Res 2:1–8Google Scholar
  68. Gnanesh BN, Bohra A, Sharma M, Byregowda M, Pandey S, Wesley V, Saxena RK, Saxena KB, KaviKishor PB, Varshney RK (2011) Genetic mapping and quantitative trait locus analysis of resistance to sterility mosaic disease in pigeonpea [Cajanus cajan (L.) Millsp.]. Field Crop Res 123:53–61Google Scholar
  69. Goncalves-Vidigal MC, Cruz AS, Garcia A, Kami J, Vidigal Filho PS, Sousa LL, McClean P, Gepts P, Pastor-Corrales MA (2011) Linkage mapping of the Phg-1 and Co-1 (4) genes for resistance to angular leaf spot and anthracnose in the common bean cultivar AND 277. Theor Appl Genet 122:893–903PubMedGoogle Scholar
  70. Gowda SJM, Radhika P, Kadoo NY, Mhase LB, Gupta VS (2009) Molecular mapping of wilt resistance genes in chickpea. Mol Breed 24:177–183Google Scholar
  71. Gupta SK, Gopalakrishna T (2009) Genetic diversity analysis in blackgram (Vigna mungo (L.) Hepper) using AFLP and transferable microsatellite markers from azuki bean (Vigna angularis (Willd.) Ohwi & Ohashi). Genome 52:120–128PubMedGoogle Scholar
  72. Gupta SK, Gopalakrishna T (2010) Development of unigene-derived SSR markers in cowpea (Vigna unguiculata) and their transferability to other Vigna species. Genome 53:508–523PubMedGoogle Scholar
  73. Gupta SK, Souframanien J, Gopalakrishna T (2008) Construction of a genetic linkage map of black gram, Vigna mungo (L.) Hepper, based on molecular markers and comparative studies. Genome 51:628–637PubMedGoogle Scholar
  74. Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161Google Scholar
  75. Gupta D, Taylor PWJ, Inder P, Phan HTT, Ellwood SR, Mathur PN et al (2012) Integration of EST-SSR markers of Medicago truncatula into intraspecific linkage map of lentil and identification of QTL conferring resistance to ascochyta blight at seedling and pod stages. Mol Breed 30:429–439Google Scholar
  76. Gupta S, Gupta DS, Anjum KT, Pratap A, Kumar J (2013) Transferability of simple sequence repeat markers in blackgram (Vigna mungo L. Hepper). Aust J Crop Sci 7:345–353Google Scholar
  77. Gupta SK, Souframanien J, Reddy KS (2015) Validation of molecular markers linked to yellow mosaic virus disease resistance in diverse genetic background of black gram [Vigna mungo (L.) Hepper]. Electron J Plant Breed 6:755–763Google Scholar
  78. Gurha SN, Singh G, Sharma YR (2003) Diseases of chickpea and their management. In: Ali M, Kumar S, Singh NB (eds) Chickpea research in India. Indian Institute of Pukse research, Kanpur, pp 195–227Google Scholar
  79. Gwag JG, Chung JW, Chung HK, Lee JH, Ma KH, Dixit A, Park YJ, Cho EG, Kim TS, Lee SH (2006) Characterization of new microsatellite markers in mungbean, Vigna radiata (L.). Mol Ecol Resour 6:1132–1134Google Scholar
  80. Hagerty CH, Cuesta-Marcos A, Cregan PB, Song Q, McClean P, Noffsinger S, Myers JR (2015) Mapping and root rot resistance and root architecture quantitative trait loci in common bean. Crop Sci 55:1969–1977Google Scholar
  81. Haglund WA, Kraft JM (2001) Fusarium wilt. In: Kraft JM, Pfleger FL (eds) Compendium of pea diseases, 2nd edn. APS Press, St. Paul, pp 14–16Google Scholar
  82. Halila I, Cobos MJ, Rubio J, Millan T, Kharrat M, Gil J (2009) Tagging and mapping a second resistance gene for Fusarium wilt race 0 in chickpea. Eur J Plant Pathol 124:87–92Google Scholar
  83. Hamwieh A, Udupa S, Choumane W, Sarker A, Dreyer F, Jung C, Baum M (2005) A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theor Appl Genet 110:669–677PubMedGoogle Scholar
  84. Havey MJ, Muehlbauer FJ (1989) Linkages between restriction fragment length, Isozyme, and morphological markers in lentil. Theor Appl Genet 77:395–401PubMedGoogle Scholar
  85. Humphry ME, Magner T, McIntyre CL, Aitken EAB, Liu CJ (2003) Identification of a major locus conferring resistance to powdery mildew (Erysiphe polygoni DC) in mungbean (Vigna radiata L. Wilczek) by QTL analysis. Genome 46:738–744PubMedGoogle Scholar
  86. Hurtado-Gonzales OP, Valentini G, Song O, Pastor-Corrales MA (2017) Fine mapping of Ur-3, a historically important rust resistance locus in common bean. G3 7:557–569PubMedGoogle Scholar
  87. Hussain M, Qazi J, Mansoor S, Iram S, Bashir M, Zafar Y (2004) First report of mungbean yellow mosaic India virus on mungbean in Pakistan. Plant Pathol 53:518Google Scholar
  88. Ilyas M, Qazi J, Mansoor S, Briddon RW (2010) Genetic diversity and phylogeography of begomoviruses infecting legumes in Pakistan. J Gen Virol 91:2091–2101PubMedGoogle Scholar
  89. Infantino A, Kharrat M, Riccioni L, Coyne CJ, McPhee KE, Grunwald NJ (2006) Screening techniques and sources of resistance to root diseases in cool season food legumes. Euphytica 147:201–222Google Scholar
  90. IPCC (Intergovernmental Panel on Climate Change) (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM (eds) A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, pp 3–21. Summary for policy makersGoogle Scholar
  91. Iruela M, Rubio J, Barro F, Cubero JI, Millan T, Gil J (2006) Detection of two quantitative trait loci for resistance to ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated with resistance. Theor Appl Genet 112:278–287PubMedGoogle Scholar
  92. Iruela M, Castro P, Rubio J, Cubero JI, Jacinto C, Millan T, Gil J (2007) Validation of a QTL for resistance to Ascochyta blight linked to resistance to Fusarium wilt race 5 in chickpea (Cicer arietinum L.). Eur J Plant Pathol 119:29–37Google Scholar
  93. Iruela M, Piston F, Cubero JI, Millan T, Barro F, Gil J (2009) The marker SCK13 associated with resistance to Ascochyta blight in chickpea is located in a region of a putative retrotransposon. Plant Cell Rep 28:53–60PubMedGoogle Scholar
  94. Janila P, Sharma B (2004) RAPD and SCAR markers for powdery mildew resistance gene er in pea. Plant Breed 123:271–274Google Scholar
  95. Jendoubi W, Bouhadida M, Millan T, Kharrat M, Gil J, Rubio J, Madrid E (2016) Identification of target region including the Foc01 /foc01 gene and development of near isogenic lines for resistance to Fusarium wilt race 0 in chickpea. Euphytica 210:119–133Google Scholar
  96. Jha AB, Tar’an B, Diapari M, Sindhu A, Shunmugam A, Bett K, Warkentin TD (2015) Allele diversity analysis to identify SNPs associated with ascochyta blight resistance in pea. Euphytica 202:189–197Google Scholar
  97. Jha AB, Tar’an B, Stonehouse R, Warkentin TD (2016) Identification of QTLs associated with improved resistance to ascochyta blight in an interspecific pea recombinant inbred line population. Crop Sci 56:2926–2939Google Scholar
  98. Jha AB, Gali KK, Tar’an B, Warkentin TD (2017) Fine mapping of QTLs for ascochyta blight resistance in Pea using heterogeneous inbred families. Front Plant Sci 8:765PubMedPubMedCentralGoogle Scholar
  99. Jingade P, Ravikumar RI (2015) Development of molecular map and identification of QTLs linked to Fusarium wilt resistance in chickpea. J Genet 94:723–729PubMedGoogle Scholar
  100. Jung G, Coyne DP, Scroch PW, Nienhuis J, Arnaud-Santana E, Bokosi J, Ariyarathne HM, Steadman, Beaver JS, Kaeppler SM (1996) Molecular markers associated with plant architecture and resistance to common blight, web blight, and rust in common bean. J Am Soc Hortic Sci 121:794–803Google Scholar
  101. Kamfwa K, Mwala M, Okori P, Gibson P, Mukankusi C (2013) Identification of QTL for Fusarium Root Rot Resistance in Common Bean. J Crop Improv 27:406–418Google Scholar
  102. Kang YJ et al (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5:5443.  https://doi.org/10.1038/ncomms6443CrossRefPubMedPubMedCentralGoogle Scholar
  103. Kasettranan W, Somta P, Srinives P (2010) Mapping of quantitative trait loci controlling powdery mildew resistance in Mungbean (Vigna radiata (L.) Wilczek). J Crop Sci Biotech 3:155–161Google Scholar
  104. Kaur S, Kimber RBE, Cogan NOI, Materne M, Forster JW, Paull JG (2014) SNP discovery and high-density genetic mapping in faba bean (Vicia faba L.) permits identification of QTLs for ascochyta blight resistance. Plant Sci 217:47–55PubMedGoogle Scholar
  105. Keller B, Manzanares C, Jara C, Lobaton JD, Studer B, Raatz B (2015) Fine-mapping of a major QTL controlling angular leaf spot resistance in common bean (Phaseolus vulgaris L.). Theor Appl Genet 128:813–826PubMedPubMedCentralGoogle Scholar
  106. Kelly JD, Gepts P, Miklas PN, Coyne DP (2003) Tagging and mapping of genes and QTL and molecular markers assisted selection for traits of economic importance in bean and cowpea. Field Crop Res 82:135–154Google Scholar
  107. Khalekar GD, Akhare AA, Gahukar SJ, Singh NK, Kumar M (2014) Identification of simple sequence repeat markers associated with wilt resistance in pigeonpea. J Environ Biol 35:955–960PubMedGoogle Scholar
  108. Khattak GSS, Haq MA, Rana SA, Abass G, Irfag M (2000) Effect of mungbean yellow mosaic virus (MYMV) on yields and yield components of mungbean (Vigna radiata L. Wilczek). Kasetsart J (Nat Sci) 34:12–16Google Scholar
  109. Kitsanachandee R, Somta P, Chatchawankanphanich O, Akhtar KP, Shah TM, Nair RM, Bains TS, Sirari A, Kaurand L, Srinives P (2013) Detection of quantitative trait loci for mungbean yellow mosaic India virus (MYMIV) resistance in mungbean (Vigna radiata (L.) Wilczek) in India and Pakistan. Breed Sci 63:367–373PubMedPubMedCentralGoogle Scholar
  110. Kolkman JM, Kelly JD (2003) QTL conferring resistance and avoidance to white mold in common bean. Crop Sci 43:539–548Google Scholar
  111. Kongjaimun A, Kaga A, Tomooka N, Somta P, Shimizu T, Shu Y, Isemura T, Vaughan DA, Srinives P (2012) An SSR-based linkage map of yardlong bean (Vigna unguiculata (L.) Walp. subsp. unguiculata sesquipedalis group) and QTL analysis of pod length. Genome 55:81–92PubMedGoogle Scholar
  112. Kotresh H, Fakrudin B, Punnuri SM, Rajkumar BK, Thudi M, Paramesh H et al (2006) Identification of two RAPD markers genetically linked to a recessive allele of a Fusarium wilt resistance gene in pigeonpea (Cajanus cajan L. Millsp.). Euphytica 149:113–120Google Scholar
  113. Kottapalli P, Gaur PM, Katiyar SK, Crouch JH, Buhariwalla HK, Pande S, Gali KK (2009) Mapping and validation of QTLs for resistance to an Indian isolate of Ascochyta blight pathogen in chickpea. Euphytica 165:79–88Google Scholar
  114. Kraft JM, Pfleger FL (2001) Compendium of Pea diseases, 2nd edn. American Phytopathological Society Press, St. PaulGoogle Scholar
  115. Kulkarni NK, Reddy AS, Kumar PL, Vijaynarasimha J, Rangaswamy KT, Muniyappa V, Reddy LJ, Saxena KB, Jones AT, Reddy DVR (2003) Broad-based resistance to pigeonpea sterility mosaic disease in accessions of Cajanus scarabaeoides (L.) Benth. Indian J Plant Prot 31:6–11Google Scholar
  116. Kumar SV, Tan SG, Quah SC, Yusoff K (2002a) Isolation and characterization of seven tetranucleotide microsatellite loci in mungbean, Vigna radiata. Mol Ecol Notes 2:293–295Google Scholar
  117. Kumar SV, Tan SG, Quah SC, Yusoff K (2002b) Isolation of microsatellite markers in mungbean, Vigna radiata. Mol Ecol Notes 2:96–98Google Scholar
  118. Kundagrami S, Basak J, Maiti S, Kundu A, Das B, Ghose TK, Pal A (2009) Agronomic, genetic and molecular characterization of MYMV tolerant mutant lines of Vigna Mungo. Int J Plant Breed Genet 3:1–10Google Scholar
  119. Kwon SJ, Smykal P, Hu J, Wang M, Kim SJ, McGee RJ, McPhee K, Coyne CJ (2013) User-friendly markers linked to Fusarium wilt race 1 resistance Fw gene for marker-assisted selection in pea. Plant Breed 132:642–648Google Scholar
  120. Lara LAC, Santos JB, Veloso JS, Balestre M, Alves FC, Leite ME (2014) Identification of QTLs for Resistance to Sclerotinia sclerotiorum in Carioca Common Bean by the Moving Away Method. Hindawi Publishing Corporation. ISRN Molecular Biology, p 7.Google Scholar
  121. Li Y, Ruperao P, Batley J, Edwards D, Davidson J, Hobson K, Sutton T (2017) Genome analysis identified novel candidate genes for ascochyta blight resistance in chickpea using whole genome re-sequencing data. Front Plant Sci 8:359PubMedPubMedCentralGoogle Scholar
  122. Lichtenzveig J, Bonfil DJ, Zhang HB, Shtienberg D, Abbo S (2006) Mapping quantitative trait loci in chickpea associated with time to flowering and resistance to Didymella rabiei the causal agent of Ascochyta blight. Theor Appl Genet 113:1357–1369PubMedGoogle Scholar
  123. Liu JF, Cao TS, Feng J, Chang KF, Hwang SF, Strelkov SE (2013) Characterization of the fungi associated with ascochyta blight of field pea in Alberta, Canada. Crop Prot 54:55–64Google Scholar
  124. Liu N, Xu S, Yao X, Zhang G, Mao W, Hu Q, Feng Z, Gong Y (2016) Studies on the Control of Ascochyta blight in field peas (Pisum sativum L.) caused by Ascochyta pinodes in Zhejiang Province, China. Front Microbiol 7:481PubMedPubMedCentralGoogle Scholar
  125. Lopez CE, Acosta IF, Jara C, Pedraza F, Gaitan-Solis E, Gallego G, Beebe S, Tohme J (2003) Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology 93:88–95PubMedGoogle Scholar
  126. Loridon K, McPhee KE, Morin J, Dubreuil P, Pilet-Nayel ML, Aubert G, Rameau C, Baranger A, Coyne CJ, Lejeune-Henault I, Burstin J (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111:1022–1031PubMedGoogle Scholar
  127. Lucas MR, Diop NN, Wanamaker S, Ehlers JD, Roberts PA, Close TJ (2011) Cowpea–soybean synteny clarified through an improved genetic map. Plant Genome 4:218–225Google Scholar
  128. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read denovo assembler. Giga Sci 1:18.  https://doi.org/10.1186/2047-217X-1-18CrossRefGoogle Scholar
  129. Madrid E, Rubiales D, Moral A, Moreno MT, Millán T, Gil J, Rubio J (2007) Mechanism and molecular markers associated with rust resistance in a chickpea interspecific cross (Cicer arietinum × Cicer reticulatum). European J Plant Pathol 121(1):43–53Google Scholar
  130. Mahuku GS, Maria Iglesias A, Jara C (2009) Genetics of angular leaf spot resistance in the Andean common bean accession G5686 and identification of markers linked to the resistance genes. Euphytica 167:381–396Google Scholar
  131. Mahuku GS, Antonia Henriquez M, Montoya C, Jara C, Teran H, Beebe S (2011) Inheritance and development of molecular markers linked to angular leaf spot resistance genes in the common bean accession G10909. Mol Breed 28:57–71Google Scholar
  132. Maiti S, Basak J, Kundagrami S, Kundu A, Pal A (2011) Molecular marker assisted genotyping of mungbean yellow mosaic India virus resistant germplasm of mungbean and urdbean. Mol Biotechnol 47:95–104PubMedGoogle Scholar
  133. Malik IA, Sarwar G, Ali Y (1986) Genetic studies in mung bean (Vigna radiata (L) Wilczek). 1. Inheritance of tolerance to mungbean yellow mosaic virus and some morphological characters. Pak J Bot 18:189–198Google Scholar
  134. Mandal B, Verma A, Malathi VG (1997) Systemic infection of Vigna mungo using the cloned DNAs of the blackgram isolate of mungbean yellow mosaic geminivirus through agroinoculation and transmission of the progeny virus by whitefly. J Phytopathol 145:505–510Google Scholar
  135. Maxted N, Kell SP (2009) Establishment of a global network for the in situ conservation of crop wild relatives: status and needs. FAO Commission on Genetic Resources for Food and Agriculture, RomeGoogle Scholar
  136. Mayer MS, Tullu A, Simon CJ, Kumar J, Kaiser WJ, Kraft JM, Muehlbauer FJ (1997) Development of a DNA marker for fusarium wilt resistance in chickpea. Crop Sci 37:1625–1629Google Scholar
  137. McClendon MT, Inglis DA, McPhee KE, Coyne CJ (2002) DNA markers linked to Fusarium wilt race 1 resistance in pea. J Am Soc Hortic Sci 127:602–607Google Scholar
  138. McPhee KE, Inglis DA, Gundersen B, Coyne CJ (2012) Mapping QTL for Fusarium wilt race 2 partial resistance in pea (Pisum sativum). Plant Breed 131:300–306Google Scholar
  139. Melotto M, Afanador L, Kelly JD (1996) Development of a SCAR marker linked to the I gene in common bean. Genome 39:1216–1219PubMedGoogle Scholar
  140. Mienie CMS, Liebenberg MM, Pretorius ZA, Miklas PN (2005) SCAR markers linked to the common bean rust resistance gene Ur-13. Theor Appl Genet 111:972–979PubMedGoogle Scholar
  141. Miklas PN, Johnson E, Stone V, Beaver JS, Montoya C, Zapata M (1996) Selective mapping of QTL conditioning disease resistance in common bean. Crop Sci 36:1344–1351Google Scholar
  142. Miklas PN, Smith JR, Riley R, Grafton KF, Singh SP, Jung G, Coyne DP (2000) Marker-assisted breeding for pyramided resistance to common bacterial blight in common bean. Annu Rep Bean Improv Coop 43:39–40Google Scholar
  143. Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131Google Scholar
  144. Millan T, Rubio J, Iruela M, Daly K, Cubero JI, Gil J (2003) Markers associated with Ascochyta blight resistance in chickpea and their potential in marker assisted selection. Field Crop Res 84:373–384Google Scholar
  145. Miranda ALR (2012) Genome mapping and molecular markers for Ascochyta blight resistance in pea (Pisum stivum L.). MSc Thesis submitted to North Dakota State University. p 116Google Scholar
  146. Miyagi M, Humphry M, Ma ZY, Lambrides CJ, Bateson M, Liu CJ (2004) Construction of bacterial artificial chromosome libraries and their application in developing PCR-based markers closely linked to a major locus conditioning bruchid resistance in mungbean (Vigna radiata L. Wilczek). Theor Appl Genet 110:151–156PubMedGoogle Scholar
  147. Muchero W, Diop NN, Bhat PR, Fenton RD, Wanamaker S, Pottorff M, Hearne S, Cisse N, Fatokun CA, Ehlers JD, Roberts PA, Close TJ (2009) A consensus genetic map of cowpea [Vigna unguiculata (L) Walp.] and synteny based on EST-derived SNPs. Proc Natl Acad Sci U S A 106:18159–18164PubMedPubMedCentralGoogle Scholar
  148. Muchero W, Ehlers JD, Roberts PA (2010) QTL analysis for resistance to foliar damage caused by Thrips tabaci and Frankliniella schultzei (Thysanoptera: Thripidae) feeding in cowpea [Vigna unguiculata (L.) Walp.]. Mol Breed 25:47–56PubMedGoogle Scholar
  149. Muchero W, Ehlers JD, Close TJ, Roberts PA (2011) Genic SNP markers and legume synteny reveal candidate genes underlying QTL for Macrophomina phaseolina resistance and maturity in cowpea [Vigna unguiculata (L) Walp.]. BMC Genomics 12:8PubMedPubMedCentralGoogle Scholar
  150. Mundt CC (2014) Durable resistance: a key to sustainable management of pathogen and pests. Infect Genet Evol:446–455.  https://doi.org/10.1016/j.meegid.2014.01.011PubMedGoogle Scholar
  151. Murugesan S, Murugan E, Nadarajan N (1997) Inheritance of duration, leaf colour, sterility mosaic disease resistance and growth habit in pigeonpea. Madras Agric J 84:10–12Google Scholar
  152. Nagaraj KM, Chikkadevaiah, Kulkarni RS (2004) Inheritance of resistance to sterility mosaic virus in pigeonpea (Cajanus cajan (L.) Millsp.). Ind J Genet 64:118–120Google Scholar
  153. Nene YL, Reddy MV (1976) Screening for resistance to sterility mosaic of pigeon pea. Plant Dis Rep 60:1034–1036Google Scholar
  154. Ning Y, Liu W, Wang GL (2017) Balancing immunity and yield in crop plants. Trends Plant Sci 22:1069–1079PubMedGoogle Scholar
  155. Ning Y and Wang GL (2018) Breeding plant broad-spectrum resistance without yield penalties. Proc Natl Acad Sci 115(12):2859–2861Google Scholar
  156. Nisar M, Ghafoor A (2011) Linkage of a RAPD marker with powdery mildew resistance er-1 gene in Pisum sativum L. Russ J Genet 47:300–304Google Scholar
  157. O’Boyle PD, Kelly JD, Kirk WW (2007) Use of marker-assisted selection to breed for resistance to common bacterial blight in common bean. J Am Soc Hort Soc 132:381–386Google Scholar
  158. Oblessuc PR, Baroni RM, Garcia AAF, Chioratto AF, Carbonell SAM, Camargo LEA, Benchimol LL (2012) Mapping of angular leaf spot resistance QTL in common bean (Phaseolus vulgaris L.) under different environments. BMC Genet 13:50PubMedPubMedCentralGoogle Scholar
  159. Okiror MA (2002) Genetics of resistance to Fusarium udum in pigeonpea [Cajanus cajan (L.) Millsp.]. Ind J Genet 62:218–220Google Scholar
  160. Okubara PA, Keller KE, McClendon MT, Inglis DA, McPhee KE, Coyne CJ (2005) Y15_999Fw, a dominant SCAR marker linked to the Fusarium wilt race 1 (Fw) resistance gene in pea. Pisum Genet 37:30–33Google Scholar
  161. Ouédraogo JT, Gowda BS, Jean M, Close TJ, Ehlers JD, Hall AE, Gillaspie AG, Roberts PA, Ismail AM, Bruening G, Gepts P, Timko MP, Belzile FJ (2002) An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers and biological resistance traits. Genome 45:175–188PubMedGoogle Scholar
  162. Pal SS, Dhaliwal HS, Bains SS (1991) Inheritance of resistance to yellow mosaic virus in some Vigna species. Plant Breed 106:168–171Google Scholar
  163. Pandey S, Sharma M, Kumari S, Gaur PM, Chen W, Kaur L, Macleod W, Basandrai AK, Basandrai D, Bakr A, Sandhu JS, Tripathi HS, Gowda CLL (2009) Integrated foliar diseases management of legumes. In: Ali M et al (eds) Grain legumes: genetic improvement, management and trade. Indian Society of Pulses Research and Development, Indian Institute of Pulses Research, Kanpur, pp 143–161Google Scholar
  164. Pant V, Gupta D, Choudhury NR, Malathi VG, Varma A, Mukherjee SK (2001) Molecular characterization of the Rep protein of the blackgram isolate of Indian mungbean yellow mosaic virus. J Gen Virol 82:2559–2567PubMedGoogle Scholar
  165. Park SO, Coyne DP, Steadman JR, Crosby KM, Brick MA (2004) RAPD and SCAR markers linked to the Ur-6 Andean gene controlling specific rust resistance in common bean. Crop Sci 44:1799–1807Google Scholar
  166. Patil BS, Ravikumar RL, Bhat JS, Soregaon CD (2014) Molecular mapping of QTLs for resistance to early and late Fusarium wilt in chickpea. Czech J Genet Plant Breed 50:171–176Google Scholar
  167. Patil PG, Dubey J, Bohra A, Mishra RK, Saabale PR, Das A, Rathore M, Singh NP (2017) Association mapping to discover significant marker-trait association for resistance against fusarium wilt variant 2 in pigeon pea [Cajanus cajan (L.) Millsp.] using SSR markers. J Appl Genet 58:307–319PubMedGoogle Scholar
  168. Pedraza F, Gallego G, Beebe S, Tohme J (1997) Marcadores SCAR y RAPD para la Resistencia a la bacteriosis cmun (CBB). In: Singh SP, Voysest O (eds) Taller de Mejoramiento de Frijol papa el Siglo XXI: bases para una estrategia para America Latina. International Centre for Tropical Agriculture, Cali, pp 130–134Google Scholar
  169. Perseguini JMKC, Oblessuc PR, Rosa JRBF, Gomes KA, Chiorato AF, Carbonell SAM et al (2016) Genome-wide association studies of anthracnose and angular leaf spot resistance in common bean (Phaseolus vulgaris L.). PLoS One 11(3):e0150506PubMedPubMedCentralGoogle Scholar
  170. Pottorff M, Wanamaker S, Ma YQ, Ehlers JD, Roberts PA, Close TJ (2012) Genetic and physical mapping of candidate genes for resistance to Fusarium oxysporum f.sp. tracheiphilum race 3 in cowpea [Vigna unguiculata (L.) Walp]. PLoS One 7(7):e41600PubMedPubMedCentralGoogle Scholar
  171. Pottorff MO, Li G, Ehlers JD, Close TJ, Roberts PA (2014) Genetic mapping, synteny, and physical location of two loci for Fusarium oxysporum f.sp. tracheiphilum race 4 resistance in cowpea [Vigna unguiculata (L.) Walp]. Mol Breed 33:779–791PubMedGoogle Scholar
  172. Prioul S, Frankewitz A, Deniot G, Morin G, Baranger A (2004) Mapping of quantitative trait loci for partial resistance to Ascochyta pinodes in pea (Pisum sativum L.) at the seedling and adult plant stages. Theor Appl Genet 108:1322–1334PubMedGoogle Scholar
  173. Prioul-Gervais S, Deniot G, Receveur EM, Frankewitz A, Fourmann M, Rameau C, Baranger A (2007) Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.). Theor Appl Genet 114:971–984PubMedGoogle Scholar
  174. Radhika P, Gowda SJM, Kadoo NY, Mhase LB, Jamadagni BM, Sainani MN, Chandra S, Gupta VS (2007) Development of an integrated intraspecific map of chickpea (Cicer arietinum L.) using two recombinant inbred line populations. Theor Appl Genet 115:209–216PubMedGoogle Scholar
  175. Raju NL, Gnanesh BN, Lekha P, Jayashree B, Pande S, Hiremath PJ et al (2010) The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanus cajan L Millsp). BMC Plant Biol 10:45PubMedPubMedCentralGoogle Scholar
  176. Rakshit S, Mohapatra T, Mishra SK, Dasgupta SK, Sharma RP, Sharma B (2001) Marker assisted breeding for powdery mildew resistance in pea (Pisum sativum L.). J Genet Breed 55:343–348Google Scholar
  177. Rakshit S, Winter P, Tekeoglu M, Munoz JJ, Pfaff T, BenkoIseppon M, Muehlbauer FJ, Kahl G (2003) DAF markers tightly linked to a major locus for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Euphytica 132:23–30Google Scholar
  178. Rana JC, Banyal DK, Sharma KD, Sharma MK, Gupta SK, Yadav SK (2013) Screening of pea germplasm for resistance to powdery mildew. Euphytica 189:271–282Google Scholar
  179. Ratnaparkhe MB, Gupta VS (2007) Pigeonpea. In: Kole C (ed) Genome mapping and molecular breeding in plants: pulses, sugar and tuber crops. Springer, Berlin, pp 133–142Google Scholar
  180. Ratnaparkhe MB, Tekeoglu M, Muehlbauer FJ (1998) Inter-simple-sequence-repeat (ISSR) polymorphisms are useful for Wnding markers associated with disease resistance gene clusters. Theor Appl Genet 97:515–519Google Scholar
  181. Reddy KS (2007) Identification by genetic analysis of two races of Erysiphe polygoni DC. causing powdery mildew disease in mungbean. Plant Breed 126:603–606Google Scholar
  182. Reddy KS (2009) A new mutant for yellow mosaic virus resistance in mungbean (Vigna radiata L. Wilczek) variety SML-668 by recurrent Gamma-ray irradiation. In: Shu QY (ed) Induced plant mutation in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 361–362Google Scholar
  183. Reddy KR, Singh DP (1995) Inheritance of resistance to mungbean yellow mosaic virus. Madras Agric J 88:199–201Google Scholar
  184. Reddy KS, Pawar SE, Bhatia CR (1987) Screening for powdery mildew (Erysiphe polygoni DC) resistance in mungbean (Vigna radiata (L.) Wilczek) using excised leaves. Proc Indian Acad Sci (Plant Sci) 99:365–369Google Scholar
  185. Reddy KS, Pawar SE, Bhatia CR (1994) Inheritance of powdery mildew (Erysiphe polygoni DC) resistance in mungbean (Vigna radiata (L.) Wilczek). Theor Appl Genet 88:945–948PubMedGoogle Scholar
  186. Rodrigues MA, Santos CAF, Santana JRF (2012) Mapping of AFLP loci linked to tolerance to cowpea golden mosaic virus. Genet Mol Res 11:3789–3797PubMedGoogle Scholar
  187. Rubeena A, Taylor PWJ, Ades PK, Ford R (2006) QTL mapping of resistance in lentil (Lens culinaris ssp. culinaris) to ascochyta blight (Ascochyta lentis). Plant Breed 125:506–512Google Scholar
  188. Rubio J, Haji-Moussa E, Kharrat M, Moreno MT, Millan T, Gil J (2003) Two genes and linked RAPD markers involved in resistance to Fusarium oxysporum f. sp. Ciceri race 0 in chickpea. Plant Breed 122:188–191Google Scholar
  189. Sabbavarapu MM, Sharma M, Chamarthi SK, Swapna N, Rathore A, Thudi M, Gaur PM, Pande S, Singh S, Kaur L, Varshney RK (2013) Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytca 193:121–133Google Scholar
  190. Saha GC, Sarker A, Chen W, Vandemark GJ, Muehlbauer FJ (2010a) Identification of markers associated with genes for rust resistance in Lens culinaris Medik. Euphytica 175:261–265Google Scholar
  191. Saha GC, Sarker A, Chen W, Vandemark GJ, Muehlbauer FJ (2010b) Inheritance and linkage map positions of genes conferring resistance to stemphylium blight in lentil. Crop Sci 50:1831–1839Google Scholar
  192. Saleem M, Haris WA, Malik IA (1998) Inheritance of yellow mosaic virus resistance in mungbean. Pak J Phytopathol 10:30–32Google Scholar
  193. Sandhu TS, Brar JS, Sandhu SS, Verma MM (1985) Inheritance of resistance to mungbean yellow mosaic virus in greengram. J Res Punjab Agric Univ 22:607–611Google Scholar
  194. Sant VJ (2001) Genetic diversity and linkage analysis in chickpea using DNA markers, PhD thesis, University of Pune, Pune, IndiaGoogle Scholar
  195. Santra DK, Tekeoglu M, Ratnaparkhe M, Kaiser WJ, Muehlbauer FJ (2000) Identification and mapping of QTLs conferring resistance to Ascochyta blight in chickpea. Crop Sci 40:1606–1612Google Scholar
  196. Sarala K (1993) Linkage studies in pea (Pisum sativum L.) with reference to er gene for powdery mildew resistance and other genes. Ph.D. Thesis, Indian Agricultural Research Institute, New Delhi, IndiaGoogle Scholar
  197. Savithramma DL, Divya Ramakrishnan CK (2016) Single marker analysis in mungbean (Vigna radiata (L) Wilczek) for powdery mildew disease resistance and yield attributing traits. Proteomics Bioinform 9(12):45Google Scholar
  198. Saxena KB, Sharma D (1990) Pigeonpea genetics. In: Nene YL, Hall SD, Sheila VK (eds) The pigeonpea. Wallingford, OxonGoogle Scholar
  199. Saxena KB (2008) Genetic Improvement of Pigeon Pea- A Review. Tropical Plant Biol 1:159–178Google Scholar
  200. Saxena RK, Penmetsa RV, Upadhyaya HD, Kumar A, Carrasquilla-Garcia N, Schlueter JA et al (2012) Large-scale development of cost-effective single nucleotide polymorphism marker assays for genetic mapping in pigeonpea and comparative mapping in legumes. DNA Res 19:449–461PubMedPubMedCentralGoogle Scholar
  201. Saxena R, Thudi M, Varshney RK (2016) Genomics, trait mapping and molecular breeding in pigeonpea and chickpea. Ind J Genet 76:504–511Google Scholar
  202. Saxena RK, Singh V, Kale SM, Parupali S, Joshi S, Tathineni R, Parupali S, Kumar V, Garg V, Das RR, Sharma M, Yamini KN, Muniswamy S, Ghanta A, Rathore A, Sameerkumar CV, Saxena KB, Kavikishore PB, Varshney RK (2017a) Construction of genotyping-by-sequencing based high-density genetic maps and QTL mapping for fusarium wilt resistance in pigeonpea. Sci Rep 7:1911PubMedPubMedCentralGoogle Scholar
  203. Saxena RK, Kale SM, Kumar V, Parupali S, Joshi S, Singh V, Garg V, Das RR, Sharma M, Yamini KN, Ghanta A, Rathore A, Sameerkumar CV, Saxena KB, Varshney RK (2017b) Genotyping-by-sequencing of three mapping populations for identification of candidate genomic regions for resistance to sterility mosaic disease in pigeonpea. Sci Rep 7:1813PubMedPubMedCentralGoogle Scholar
  204. Schneider KA, Grafton KF, Kelly JD (2000) QTL analysis of resistance to Fusarium root rot in bean. Crop Sci 41(2):535–542Google Scholar
  205. Selvi R, Muthiah AR, Manivannan N, Raveendran TS, Manickam A, Samiyappan R (2006) Tagging of RAPD marker for MYMV resistance in mungbean (Vigna radiata L. Wilczek). Asian J Plant Sci 5:277–280Google Scholar
  206. Sharma M, Ghosh R (2016) An update on the host plant resistance to pigeonpea diseases. Legume Perspect 11:21–23Google Scholar
  207. Sharma KD, Muehlbauer FJ (2005) Genetic mapping of Fusarium oxysporum f. sp. ciceris race-specific resistance genes in chickpea (Cicer arietinum L.). In: Abstract of the International Food Legume Research Conference-IV. Indian Agricultural Research Institute, New Delhi, pp 18–22Google Scholar
  208. Sharma KD, Muehlbauer FJ (2007) Fusarium wilt of chickpea: physiological specialization, genetics of resistance and resistance gene tagging. Euphytica 157:1–14Google Scholar
  209. Sharma D, Gupta SC, Rai GS, Reddy MV (1984) Inheritance of resistance to sterility mosaic disease in pigeonpea. Indian J Genet 44:84–90Google Scholar
  210. Sharma KD, Winter P, Kahl G, Muehlbauer FJ (2004) Molecular mapping of Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea. Theor Appl Genet 108:1243–1248PubMedGoogle Scholar
  211. Sharma KD, Chen W, Muehlbauer FJ (2005) Genetics of chickpea resistance to five races of Fusarium wilt and a concise set of race differentials for Fusarium oxysporum f. sp. ciceris. Plant Dis 89:385–390PubMedGoogle Scholar
  212. Shukla GP, Pandya BP (1985) Resistance to yellow mosaic in greengram. SABRAO J 17:165–171Google Scholar
  213. Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and its comparison with map of pea and lentil. J Hered 88:115–119Google Scholar
  214. Simon MV, Benko Iseppon AM, Resende LV, Winter P, Kahl G (2007) Genetic diversity and phylogenetic relationships in Vigna Savi germplasm revealed by DNA amplification finger printing. Genome 50:538–547PubMedGoogle Scholar
  215. Singh SP, Gepts P, Debouck DG (1991) Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 45:379–396Google Scholar
  216. Singh D, Sinha B, Rai VP, Singh MN, Singh DK, Kumar R, Singh AK (2016a) Genetics of Fusarium wilt resistance in pigeonpea (Cajanus cajan) and efficacy of associated SSR markers. Plant Pathol J 32:95–101PubMedPubMedCentralGoogle Scholar
  217. Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM, Chitikineni A, Pazhamala LT, Garg V, Sharma M, Sinha P, Kumar CVS, Parupalli S, Vechalapu S, Patil S, Muniswamy S, Ghanta A, Yamini M, Dharmaraj PS, Varshney RK (2016b) Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotech J 14:1183–1194Google Scholar
  218. Skiba B, Ford R, Pang ECK (2004) Construction of a linkage map based on a Lathyrus sativus backcross population and preliminary investigation of QTLs associated with resistance to Ascochyta blight. Theor Appl Genet 109:1726–1735PubMedGoogle Scholar
  219. Souframanien J, Gopalakrishna T (2006) ISSR and SCAR marker linked to the mungbean yellow mosaic virus (MYMV) resistance gene in blackgram (Vigna mungo L. Hepper). Plant Breed 125:619–622Google Scholar
  220. Souframanien J, Reddy KS (2015) De novo assembly, characterization of immature seed transcriptome and development of genic-SSR markers in black gram [Vigna mungo (L.) Hepper]. PLoS One 10(6):e0128748PubMedPubMedCentralGoogle Scholar
  221. Soule M, Porter L, Medina J, Santana GP, Blair MW, Miklas PN (2011) Comparative QTL map for white mold resistance in common bean, and characterization of partial resistance in dry bean lines VA19 and I9365-31. Crop Sci 51:123–139Google Scholar
  222. Souza TLPO, Alzate-Marin AL, Dessaune SN, Nunes ES, Queiroz VT, Moreira MA, Barros EG (2007) Inheritance study and validation of SCAR molecular marker for rust resistance in common bean. Crop Breed Appl Biotechnol 7:11–15Google Scholar
  223. Souza TLPO, Alzate-Marin AL, Faleiro FG, Barros EG (2008) Pathosystem common bean—Uromyces appendiculatus: host resistance, pathogen specialization, and breeding for rust resistance. Pest Technol 2:56–69Google Scholar
  224. Souza TLPO, Ragagnin VA, Dessaune SN et al (2014) DNA marker-assisted selection to pyramid rust resistance genes in “carioca” seeded common bean lines. Euphytica 199:303–316Google Scholar
  225. Srinivas T, Reddy MV, Jain KC, Reddy MSS (1997) Studies on inheritance of resistance and allelic relationships for strain 2 of pigeonpea sterility mosaic pathogen. Ann Appl Biol 130:105–110Google Scholar
  226. Srivastava RK, Mishra SK, Singh K, Mohapatra T (2012) Development of a coupling-phase SCAR marker linked to the powdery mildew resistance gene er1 in pea (Pisum sativum L.). Euphytica 186:855–866Google Scholar
  227. Stephens A, Lombardi M, Cogan NOI, Forster JW, Hobson K, Materne M et al (2014) Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of ascochyta blight resistance in chickpea (Cicer arietinum L.). Mol Breed 33:297–313Google Scholar
  228. Sudheesh S, Rodda MS, Davidson J, Javid M, Stephans A, Slater AT et al (2016) SNP-based linkage mapping for validation of QTLs for resistance to ascochyta blight in lentil. Front Plant Sci 7:1604PubMedPubMedCentralGoogle Scholar
  229. Sun S, Wang J, Fu H, Duan C, Wang X, Zhu Z (2015) Resistance to powdery mildew in the pea cultivar Xucai-1 is conferred by the gene er1. Crop J 3:489–499Google Scholar
  230. Sun S, Fu H, Wang Z, Duan C, Zong X, Zhu Z (2016) Discovery of a novel er1 allele conferring powdery mildew resistance in Chinese Pea (Pisum sativum L.) landraces. PLoS One 11(1):e0147624PubMedPubMedCentralGoogle Scholar
  231. Talekar SC, Viswanatha KP, Lohithaswa HC (2017) Assessment of genetic variability, character association and path analysis in F2 segregating population for quantitative traits in chickpea. Int J Curr Microbiol App Sci 6(12):2184–2192Google Scholar
  232. Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W, Sommanas W, Tragoonrung S, Srinives P (2009) Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek). BMC Plant Biol 9:137PubMedPubMedCentralGoogle Scholar
  233. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066PubMedGoogle Scholar
  234. Tar’an B, Michaels TE, Pauls KP (2001) Mapping genetic factors affecting the reaction to Xanthomous axonopodis pv. Phaseoli in Phaseolus vulgaris L. under field conditions. Genome 44:1045–1056Google Scholar
  235. Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Blade S, Penner G (2003a) Quantitative trait loci for lodging resistance, plant height and partial resistance to Mycosphaerella blight in field pea (Pisum sativum L.). Theor Appl Genet 107:1482–1491PubMedGoogle Scholar
  236. Tar’an B, Buchwaldt L, Tullu A, Banniza S, Warkentin TD, Vandenberg A (2003b) Using molecular markers to pyramid genes for resistance to ascochyta blight and anthracnose in lentil (Lens culinaris Medik.). Euphytica 134:223–230Google Scholar
  237. Tar’an B, Warkentin TD, Tullu A, Vandenberg A (2007) Genetic mapping of Ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map. Genome 50:26–34PubMedGoogle Scholar
  238. Taran B, Buchwald L, Tullu A, Banniza S, Warkantin TD, Vandenberg A (2003) Using molecular markers to pyramid genes for resistance to Ascochyta blight and anthracnose in Lentil (Lens culinaris medic). Euphyica 134:223–230Google Scholar
  239. Teixeira FF, Bosco dos Santos J, Patto Ramalho MA, Barbosa Abreu ÂF, Teixeira Guimarães C, Carlos de Oliveira A (2005) QTL mapping for angular leaf spot in common bean using microsatellite markers. Crop Breed Appl Biotechnol 5:272–278Google Scholar
  240. Tekeoglu M, Tullu A, Kaiser WA, Muehlbauer FJ (2000) Inheritance and linkage of two genes that confers resistance to Fusarium wilt in chickpea. Crop Sci 40:1247–1251Google Scholar
  241. Timko MP, Rushton PJ, Laudeman TW, Bokowiec MT, Chipumuro E, Cheung F, Town CD, Chen X (2008) Sequencing and analysis of the gene-rich space of cowpea. BMC Genomics 9:103PubMedPubMedCentralGoogle Scholar
  242. Timmerman GM, Frew TJ, Weeden NF, Miller AL, Goulden DS (1994) Linkage analysis of er-1, a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D.C.). Theor Appl Genet 88:1050–1055PubMedGoogle Scholar
  243. Timmerman-Vaughan GM, Frew TJ, Russell AC, Khan T, Butler R, Gilpin M, Falloon K (2002) QTL mapping of partial resistance to field epidemics of ascochyta blight of pea. Crop Sci 42:2100–2111Google Scholar
  244. Timmerman-Vaughan GM, Frew TJ, Butler R, Murray S, Gilpin M, Falloon K, Khan T (2004) Validation of quantitative trait loci for Ascochyta blight resistance in pea (Pisum sativum L.), using populations from two crosses. Theor Appl Genet 109:1620–1631PubMedGoogle Scholar
  245. Timmerman-Vaughan GM, Moya L, Frew TJ, Murray SR, Crowhurst R (2016) Ascochyta blight disease of pea (Pisum sativum L.): defence-related candidate genes associated with QTL regions and identification of epistatic QTL. Theor Appl Genet 129:879–896PubMedGoogle Scholar
  246. Tiwari S, Dhar V (2011) Prevalence of new variants of Fusarium udum in India. Indian Phytopathol 64:243–246Google Scholar
  247. Tiwari KR, Penner GA, Warkentin TD (1997) Inheritance of powdery mildew resistance in pea. Can J Plant Sci 77:307–310Google Scholar
  248. Tiwari KR, Penner GA, Warkentin TD (1998) Identification of coupling and repulsion phase markers for powdery mildew resistance genes er1 in pea. Genome 41:440–444Google Scholar
  249. Tonguc M, Weeden NF (2010) Identification and mapping of molecular markers linked to er1 gene in pea. J Plant Mol Biol Biotechnol 1(1):1–5Google Scholar
  250. Tullu A (1996) Genetics of fusarium wilt resistance in chickpea. PhD dissertation. Crop and Soil Science Department. Washington State University, PullmanGoogle Scholar
  251. Tullu A, Muehlbauer FJ, Simon CJ, Mayer MS, Kumar J, Kaiser WJ, Kraft JM (1998) Inheritance and linkage of a gene for resistance to race 4 of fusarium wilt and RAPD markers in chickpea. Euphytica 102:227–232Google Scholar
  252. Tullu A, Kaiser WJ, Kraft JM, Muehlbauer FJ (1999) A second gene for resistance to race 4 of Fusarium wilt in chickpea and linkage with a RAPD marker. Euphytica 109:43–50Google Scholar
  253. Tullu A, Buchwaldt L, Warkentin T, Taran B, Vandenberg A (2003) Genetics of resistance to anthracnose and identification of AFLP and RAPD markers linked to the resistance gene in PI 320937 germplasm of lentil (Lens culinaris Medikus). Theor Appl Genet 106:428–434PubMedGoogle Scholar
  254. Tullu A, Taran B, Breitkreutz C, Buchwaidt L, Banniza S, Warkentin TD et al (2006) A quantitative-trait locus for resistance to ascochyta blight Ascochyta lentis maps close to a gene for resistance to anthracnose Colletotrichum truncatum in lentil. Can J Plant Pathol 28:588–595Google Scholar
  255. Udupa SM, Baum M (2003) Genetic dissection of pathotype-specific resistance to Ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers. Theor Appl Genet 106:1196–1202PubMedGoogle Scholar
  256. Uma MS, Hegde N, Hittalmani S (2016) Identification of SSR marker associated with rust resistance in cowpea (Vigna unguiculata L.) using bulk segregant analysis. Legum Res 39(1):39–42Google Scholar
  257. Varshney RK (2016) Exciting journey of 10 years from genome to fields and markets: some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. Plant Sci 242:98–107PubMedGoogle Scholar
  258. Varshney RK, Close TJ, Singh NK, Hoisington DA, Cook DR (2009) Orphan legume crops enter the genomics era. Curr Opin Plant Biol 12:202–210PubMedGoogle Scholar
  259. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89Google Scholar
  260. Varshney RK, Mohan M, Gaur PM, Gangarao NVPR, Pandey MK, Bohra A et al (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 31:1120–1134PubMedGoogle Scholar
  261. Varshney RK, Mohan SM, Gaur PM, Chamarthi SK, Singh VK, Srinivasan S, Swapna N, Sharma M, Singh S, Kaur L, Pande S (2014) Marker-assisted backcrossing to introgress resistance to Fusarium wilt (FW) race 1 and Ascochyta blight (AB) in C 214, an elite cultivar of chickpea. Plant Genome 7:1Google Scholar
  262. Varshney RK, Terauchi R, McCouch SR (2014a) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 2:e1001883Google Scholar
  263. Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L et al (2014b) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462PubMedGoogle Scholar
  264. Vasconcellos RCC, Oraguzie OB, Soler A, Arkwazee H, Myers JR, Ferreira JJ, Song Q, McClean P, Miklas PN (2017) Meta-QTL for resistance to white mold in common bean. PLoS One 12(2):e0171685PubMedPubMedCentralGoogle Scholar
  265. Verma RPS, Singh DP (1986) The allelic relationship of genes giving resistance to mungbean yellow mosaic virus in blackgram. Theor Appl Genet 72:737–738PubMedGoogle Scholar
  266. Verma RPS, Singh DP (1988) Inheritance of resistance to mungbean yellow mosaic virus in greengram. Ann Agric Res 9:98–100Google Scholar
  267. Vleeshouwers VGAA, Oliver RP (2014) Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. MPMI 27:196–206PubMedGoogle Scholar
  268. Warkentin TD, Rashid KY, Zimmer RC (1995) Effectiveness of a detached leaf assay for determination of the reaction of pea plant to powdery mildew. Can J Plant Pathol 17:87–89Google Scholar
  269. Warschefsky E, Verma Penmetsa R, Cook DR, van Wettberg EJB (2014) Back to the wild: Tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. Am J Bot 101(10):1791–1800PubMedGoogle Scholar
  270. Weeden NF, Wolko B (1990) Linkage map for the garden pea (Pisum sativum). In: O’Brien SJ (ed) Genetic maps. Locus maps of complex genomes. Cold Spring Harbor Laboratory Press, New York, pp 6.106–6.112Google Scholar
  271. Winter P, Benko-Iseppon AM, Huttel B, Ratnaparkhe M, Tullu A, Sonnante G, PfaV T, Tekeoglu M, Santra D, Sant VJ, Rajesh PN, Kahl G, Muehlbauer FJ (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum x C. reticulatum cross: localization of resistance genes for Fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163Google Scholar
  272. Wu X, Wang B, Wu X, Lu Z, Li G, Xu P (2017) SNP marker-based genetic mapping of rust resistance gene in the vegetable cowpea landrace ZN016. Legum Res 387:1–4Google Scholar
  273. Xu P, Wu X, Wang B, Liu Y, Ehlers JD, Close TJ, Roberts PA, Diop NN, Qin D, Hu T, Lu Z, Li G (2011) A SNP and SSR based genetic map of Asparagus bean (Vigna unguiculata ssp. sesquipedalis) and comparison with the broader species. PLoS One 6(1):e15952PubMedPubMedCentralGoogle Scholar
  274. Yang S, Saxena RK, Kulwal PL, Ash GJ, Dubey A, Harper JD et al (2011) First genetic map of pigeonpea based on diversity array technology (DArT) markers. J Genet 90:103–109PubMedGoogle Scholar
  275. Young ND (1999) A continuously optimistic vision for marker assisted breeding. Mol Breed 5:505–510Google Scholar
  276. Yu K, Park SJ, Poysa V (2000) Marker-assisted selection of common beans for resistance to common bacterial blight: efficacy and economics. Plant Breed 119:411–415Google Scholar
  277. Zannou A, Kossou DK, Ahanchede ZJ, Agbicodo E, Struik PC (2008) Genetic variability of cultivated cowpea in Benin assessed by random amplified polymorphic DNA. Afr J Biotechnol 7:4407–4414Google Scholar
  278. Zhu J, Wu J, Wang L, Blair MW, Zhu Z, Wang S (2016) QTL and candidate genes associated with common bacterial blight resistance in the common bean cultivar Longyundou 5 from China. Crop J 4:344–352Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Genetics and Plant BreedingIndira Gandhi Krishi ViswavidyalayaRaipurIndia
  2. 2.Nuclear Agriculture & Bio Technology DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Homi Bhabha National Institute, Training School ComplexMumbaiIndia

Personalised recommendations