Cloning of Genes Underlying Quantitative Resistance for Plant Disease Control

  • P. S. Shanmugavadivel
  • K. Aravind Kumar
  • K. R. Soren
  • Garima Yadav


Quantitative disease resistance (QDR) is controlled by multiple quantitative trait loci (QTLs)/gene(s) and thus confers broad-spectrum or non-race-specific resistance. QDR is more effective at adult plant stages, providing partial and usually more durable resistance than race-specific genes. QDR against various disease-causing pathogens has been observed in many crop plants, but less is known about loci/gene(s) responsible for quantitative resistance, particularly the molecular mechanisms controlling variation in quantitative resistance. Understanding QDR is essential and is of practical interest to many plant biologists and breeders in order to improve crops to cope with evolving plant pathogens. QDR has diverse biological and molecular bases as revealed by cloning of QDR loci and identification of the candidate gene(s) underlying QDR loci. Recent studies on cloning of QDR loci in a few crop and model plants have paved the way to understanding of various underlying molecular mechanisms of quantitative resistance and possible utilization for crop improvement. This chapter focuses on various models explaining QDR, QDR dissections, cloned QDR genes against various pathogens in different plant species and their molecular mechanisms of resistance, and new tools to find and dissect more QDR loci.


Quantitative disease resistance (QDR) R genes Marker-assisted breeding QDR mechanism Transgenics 


  1. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178PubMedGoogle Scholar
  2. Ahmed SM, Liu P, Xue Q, Ji C, Qi T, Guo J, Guo J, Kang Z (2017) TaDIR1-2, a wheat ortholog of lipid transfer protein AtDIR1 contributes to negative regulation of wheat resistance against Puccinia striiformis f. sp. tritici. Front Plant Sci 8:521. Scholar
  3. Badet T, Voisin D, Mbengue M, Barascud M, Sucher J, Sadon P, Balague C, Roby D, Raffaele S (2017) Parallel evolution of the POQR prolyl oligo peptidase gene conferring plant quantitative disease resistance. PLoS Genet 13(12):e1007143PubMedPubMedCentralGoogle Scholar
  4. Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436PubMedGoogle Scholar
  5. Bhaskar PB, Raasch JA, Kramer LC, Neumann P, Wielgus SM, Austin-Phillips S, Jiang J (2008) Sgt1, but not Rar1, is essential for the RB-mediated broad-spectrum resistance to potato late blight. BMC Plant Biol 8:8. Scholar
  6. Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern receptors in plants and effectors in microbial pathogens. Science 324(5928):742–744. Scholar
  7. Bossolini E, Krattinger SG, Keller B (2006) Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii. Theor Appl Genet 113:1049–1062PubMedGoogle Scholar
  8. Broglie K et al (2006) Polynucleotides and methods for making plants resistant to fungal pathogens. US patent 20080016595 A1Google Scholar
  9. Broglie KE et al (2011) Method for identifying maize plants with RCG1 gene conferring resistance to Colletotrichum infection. US patent 8,062,847Google Scholar
  10. Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153PubMedGoogle Scholar
  11. Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G et al (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804PubMedGoogle Scholar
  12. Chen H, Iqbal M, Yang RC, Spaner D (2016) Effect of Lr34/Yr18 on agronomic and quality traits in a spring wheat mapping population and implications for breeding. Mol Breed 36:53Google Scholar
  13. Cole SJ, Diener AC (2013) Diversity in receptor-like kinase genes is a major determinant of quantitative resistance to Fusarium oxysporum f. sp. matthioli. New Phytol 200:172–184PubMedGoogle Scholar
  14. Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18:1247–1256PubMedPubMedCentralGoogle Scholar
  15. Cook DE, Leem TG, Guom X, Melito S, Wang K, Bayless AM, Wang J, Hughes TJ, Willis DK, Clemente TE, Diers BW, Jiang J, Hudson ME, Bent AF (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338:1206–1209PubMedGoogle Scholar
  16. Cook DE, Mesarich CH, Thomma BP (2015) Understanding plant immunity as a surveillance system to detect invasion. Annu Rev Phytopathol 53:541–563PubMedGoogle Scholar
  17. Debieu M, Huard-Chauveau C, Genissel A, Roux F, Roby D (2016) Quantitative disease resistance to the bacterial pathogen Xanthomonas campestris involves an Arabidopsis immune receptor pair and a gene of unknown function. Mol Plant Pathol 17:510–520PubMedGoogle Scholar
  18. Delteil A, Gobbato E, Cayrol B, Estevan J, Michel-Romiti C, Dievart A, Kroj T, Morel JB (2016) Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus. BMC Plant Biol 16:1–10Google Scholar
  19. Deng H, Liu H, Li X, Xiao J, Wang S (2012) A CCCH-type zinc finger nucleic acid–binding protein quantitatively confers resistance against rice bacterial blight disease. Plant Physiol 158:876–889PubMedGoogle Scholar
  20. Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G, Li Q, Zhang J, Wu S, Milazzo J, Mao B, Wang E, Xie H, Tharreau D, He Z (2017) Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355(6328):962–965PubMedGoogle Scholar
  21. Diener AC, Ausubel FM (2005) RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171:305–321PubMedPubMedCentralGoogle Scholar
  22. Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S (2008) Activation of the indole-3-acetic acid–amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20(1):228–240PubMedPubMedCentralGoogle Scholar
  23. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11:539–548. Scholar
  24. Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360PubMedPubMedCentralGoogle Scholar
  25. Fu J, Liu H, Li Y, Yu H, Li X, Xiao J, Wang S (2011) Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol 155:589–602PubMedGoogle Scholar
  26. Fukuoka S, Okuno K (2001) QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet 103:185–190Google Scholar
  27. Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001PubMedGoogle Scholar
  28. Fukuoka S, Mizobuchi R, Saka N, Suprun I, Matsumoto T, Okuno K, Yano M (2012) A multiple gene complex on rice chromosome 4 is involved in durable resistance to rice blast. Theor Appl Genet 125:551–559PubMedPubMedCentralGoogle Scholar
  29. Fukuoka S, Yamanouchi U, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen TTT, Koizumi S, Sugimoto K, Matsumoto T, Yano M (2014) Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Sci Rep 4:4550Google Scholar
  30. Furuta T, Ashikari M, Jena KK, Doi K, Reuscher S (2017) Adapting genotyping-by-sequencing for rice F2 populations. G3 (Bethesda) 7(3):881–893Google Scholar
  31. Glawe DA (2008) The powdery mildews: a review of the world’s most familiar (yet poorly known) plant pathogens. Annu Rev Phytopathol 46:27–51PubMedGoogle Scholar
  32. Gou JY, Li K, Wu K, Wang X, Lin H, Cantu D, Uauy C, Dobon-Alonso A, Midorikawa T, Inoue K, Sánchez J, Fu D, Blechl A, Wallington E, Fahima T, Meeta M, Epstein L, Dubcovsky J (2015) Wheat stripe rust resistance protein WKS1 reduces the ability of the thylakoid-associated ascorbate peroxidase to detoxify reactive oxygen species. Plant Cell 27(6):1755–1770PubMedPubMedCentralGoogle Scholar
  33. Guo J, Fan J, Hauser BA, Rhee SY (2015) Target enrichment improves mapping of complex traits by deep sequencing. G3 (Bethesda) 6(1):67–77Google Scholar
  34. Hayano-Saito Y, Saito K, Nakamura S, Kawasaki S, Iwasaki M (2000) Fine physical mapping of the rice stripe resistance gene locus, Stvb-i. Theor Appl Genet 101:59–63Google Scholar
  35. Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuj IH (2010) Durable panicle blast–resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J 64:498–510PubMedGoogle Scholar
  36. He H, Zhu S, Ji Y, Jiang Z, Zhao R, Bie T (2017) Map-based cloning of the gene Pm21 that confers broad spectrum resistance to wheat powdery mildew. bioRxiv:177857.
  37. Hiebert CW, Thomas JB, McCallum BD, Humphreys DG, DePauw RM, Hayden MJ, Mago R, Schnippenkoetter W, Spielmeyer W (2010) An introgression on wheat chromosome 4DL in RL6077 (Thatcher∗6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor Appl Genet 121:1083–1091PubMedGoogle Scholar
  38. Hisano H, Sakamoto K, Takagi H, Terauchi R, Sato K (2017) Exome QTL-seq maps monogenic locus and QTLs in barley. BMC Genomics 18(1):125PubMedPubMedCentralGoogle Scholar
  39. Hu KM, Qiu DY, Shen XL, Li XH, Wang SP (2008) Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Mol Plant 1(5):786–793PubMedGoogle Scholar
  40. Huard-Chauveau C, Perchepied L, Debieu M, Rivas S, Kroj T, Kars I, Bergelson J, Roux F, Roby D (2013) An atypical kinase under balancing selection confers broad-spectrum disease resistance in Arabidopsis. PLoS Genet 9:e1003766PubMedPubMedCentralGoogle Scholar
  41. Hurni S, Scheuermann D, Krattinger SG, Kessel B, Wicker T, Herren G, Fitze MN, Breen J, Presterl T, Ouzunova M, Keller B (2015) The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor–like kinase. Proc Natl Acad Sci U S A 112(28):8780–8785PubMedPubMedCentralGoogle Scholar
  42. Jamann TM, Poland JA, Kolkman JM, Smith LG, Nelson RJ (2014) Unraveling genomic complexity at a quantitative disease resistance locus in maize. Genetics 198:333–344PubMedPubMedCentralGoogle Scholar
  43. Jamann TM, Luo X, Morales L, Kolkman JM, Chung CL, Nelson RJ (2016) A remorin gene is implicated in quantitative disease resistance in maize. Theor Appl Genet 129(3):591–602. Scholar
  44. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329Google Scholar
  45. Kage U, Yogendra KN, Kushalappa AC (2017) TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike. Sci Rep 7:42596PubMedPubMedCentralGoogle Scholar
  46. Kou Y, Li X, Xiao J, Wang S (2010) Identification of genes contributing to quantitative disease resistance in rice. Sci China Life Sci 53:1263–1273PubMedGoogle Scholar
  47. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363PubMedGoogle Scholar
  48. Kusch S, Pesch L, Panstruga R (2016) Comprehensive phylogenetic analysis sheds light on the diversity and origin of the MLO family of integral membrane proteins. Genome Biol Evol 8:878–895PubMedPubMedCentralGoogle Scholar
  49. Kwon T, Lee JH, Park SK, Hwang UH, Cho JH, Kwak DY, Youn YN, Yeo US, Song YC, Nam J, Kang HW, Nam MH, Park DS (2012) Fine mapping and identification of candidate rice genes associated with qSTV11(SG), a major QTL for rice stripe disease resistance. Theor Appl Genet 125:1033–1046PubMedGoogle Scholar
  50. Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse HP, Smoker M, Rallapalli G, Thomma BP, Staskawicz B, Jones JD, Zipfel C (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28:365–369PubMedGoogle Scholar
  51. Lemarie S, Robert-Seilaniantz A, Lariagon C, Lemoine J, Marnet N, Levrel A, Jubault M, Manzanares-Dauleux MJ, Gravot A (2015) Camalexin contributes to the partial resistance of Arabidopsis thaliana to the biotrophic soil borne protist Plasmodiophora brassicae. Front Plant Sci 6:539PubMedPubMedCentralGoogle Scholar
  52. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392PubMedGoogle Scholar
  53. Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, Zhou X, Zhu X, Chen Z, Wang J, Zhao W, Ma B, Qin P, Chen W, Wang Y, Liu J, Wang W, Wu X, Li P, Wang J, Zhu L, Li S, Chen X (2017) A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170(1):114–126.e15PubMedGoogle Scholar
  54. Liu S, Kandoth PK, Warren SD, Yeckel G, Heinz R, Alden J, Yang C, Jamai A, El-Mellouki T, Juvale PS, Hill J, Baum TJ, Cianzio S, Whitham SA, Korkin D, Mitchum MG, Meksem K (2012a) A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492:256–260PubMedGoogle Scholar
  55. Liu S, Yeh CT, Tang HM, Nettleton D, Schnable PS (2012b) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One 7(5):e36406PubMedPubMedCentralGoogle Scholar
  56. Liu Q, Liu H, Gong Y, Tao Y, Jiang L, Zuo W, Yang Q, Ye J, Lai J, Wu J, Lübberstedt T, Xu M (2017) An atypical thioredoxin imparts early resistance to sugarcane mosaic virus in maize. Mol Plant 10:483–497PubMedGoogle Scholar
  57. Manosalva PM, Davidsonm RM, Liu B, Zhu X, Hulbert SH, Leung H, Leach JE (2009) A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol 149:286–296PubMedPubMedCentralGoogle Scholar
  58. Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong X, Spielmeyer W, Talbot M, Bariana H, Patrick JW, Doddsm P, Singhm R, Lagudah E (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498PubMedGoogle Scholar
  59. Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P (2018) Navigating complexity to breed disease-resistant crops. Nat Rev Genet 19(1):21–33PubMedGoogle Scholar
  60. Parlevliet JE, Zadoks JC (1977) Integrated concept of disease resistance—new view including horizontal and vertical resistance in plants. Euphytica 26:5–21Google Scholar
  61. Peng H, Chen Z, Fang Z, Zhou J, Xia Z, Gao L, Chen L, Li L, Li T, Zhai W, Zhang W (2015) Rice Xa21 primed genes and pathways that are critical for combating bacterial blight infection. Sci Rep 5:12165PubMedPubMedCentralGoogle Scholar
  62. Piffanelli P, Zhou F, Casais C, Orme J, Jarosch B, Schaffrath U, Collins NC, Panstruga R, Schulze-Lefert P (2002) The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol 129:1076–1085PubMedPubMedCentralGoogle Scholar
  63. Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29Google Scholar
  64. Pritchard L, Birch PR (2014) The zigzag model of plant–microbe interactions: is it time to move on? Mol Plant Pathol 15:865–870PubMedGoogle Scholar
  65. Proels RK, Hückelhoven R (2014) Cell-wall invertases, key enzymes in the modulation of plant metabolism during defence responses. Mol Plant Pathol 15:858–864PubMedGoogle Scholar
  66. Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant-Microbe Interact 20:492–499PubMedGoogle Scholar
  67. Qiu D, Xiao J, Xie W, Liu H, Li H, Xiong L, Wang S (2008) Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol Plant 1:538–551PubMedGoogle Scholar
  68. Rawat N, Pumphrey MO, Liu S, Zhang X, Tiwari VK, Ando K, Trick HN, Bockus WW, Akhunov E, Anderson JA, Gill BS (2016) Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin–like domain conferring resistance to Fusarium head blight. Nat Genet 48:1576–1580PubMedGoogle Scholar
  69. Roux F, Voisin D, Badet T, Balague C, Barlet X, Huard-Chauveau C, Roby D, Raffaele S (2014) Resistance to phytopathogens e tutti quanti: placing plant quantitative disease resistance on the map. Mol Plant Pathol 15:427–432PubMedGoogle Scholar
  70. Schwessinger B, Bahar O, Thomas N, Holton N, Nekrasov V, Ruan D, Canlas PE, Daudi A, Petzold CJ, Singan VR, Kuo R, Chovatia M, Daum C, Heazlewood JL, Zipfel C, Ronald PC (2015) Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand dependent activation of defense responses. PLoS Pathog 11:e1004809PubMedPubMedCentralGoogle Scholar
  71. Singh VK, Khan AW, Saxena RK, Sinha P, Kale SM, Parupalli S, Kumar V, Chitikineni A, Vechalapu S, Kumar CVS, Sharma M, Ghanta A, Yamini KN, Muniswamy S, Varshney RK (2017) Indel-seq: a fast-forward genetics approach for identification of trait-associated putative candidate genomic regions and its application in pigeonpea (Cajanus cajan). Plant Biotechnol J 15(7):906–914PubMedPubMedCentralGoogle Scholar
  72. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase–like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806Google Scholar
  73. Sonnewald S, Priller JP, Schuster J, Glickmann E, Hajirezaei MR, Siebig S, Mudgett MB, Sonnewald U (2012) Regulation of cell wall–bound invertase in pepper leaves by Xanthomonas campestris pv. vesicatoria type three effectors. PLoS One 7:e51763PubMedPubMedCentralGoogle Scholar
  74. Spielmeyer W, Singh RP, McFadden H, Wellings CR, Huerta-Espino J, Kong X, Appels R, Lagudah ES (2008) Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18: a disease resistance locus effective against multiple pathogens in wheat. Theor Appl Genet 116:481–490PubMedGoogle Scholar
  75. Tonnessen BW, Manosalva P, Lang JM, Baraoidan M, Bordeos A, Mauleon R, Oard J, Hulbert S, Leung H, Leach JE (2015) Rice phenylalanine ammonia-lyase gene OsPAL4 is associated with broad spectrum disease resistance. Plant Mol Biol 87(3):273–286PubMedGoogle Scholar
  76. Vetter MM, Kronholm I, He F, Haweker H, Reymond M, Bergelson J, Robatzek S, de Meaux J (2012) Flagellin perception varies quantitatively in Arabidopsis thaliana and its relatives. Mol Biol Evol 29:1655–1667PubMedGoogle Scholar
  77. Wang G, Ding X, Yuan M, Qiu D, Li X, Xu C, Wang S (2006) Dual function of rice OsDR8 gene in disease resistance and thiamine accumulation. Plant Mol Biol 60:437–449PubMedGoogle Scholar
  78. Wang W, Wen Y, Berkey R, Xiao S (2009) Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal haustorium renders broad-spectrum resistance to powdery mildew. Plant Cell 21:2898–2913PubMedPubMedCentralGoogle Scholar
  79. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014a) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951Google Scholar
  80. Wang Q, Liu Y, He J, Zheng X, Hu J, Liu Y, Dai H, Zhang Y, Wang B, Wu W, Gao H, Zhang Y, Tao X, Deng H, Yuan D, Jiang L, Zhang X, Guo X, Cheng X, Wu C, Wangm H, Yuan L, Wan J (2014b) STV11 encodes a sulphotransferase and confers durable resistance to rice stripe virus. Nat Commun 5:4768PubMedPubMedCentralGoogle Scholar
  81. Wang X, Wang Y, Liu P, Ding Y, Mu X, Liu X, Wang X, Zhao M, Huai B, Huang L, Kang Z (2017) TaRar1 is involved in wheat defense against stripe rust pathogen mediated by YrSu. Front Plant Sci 8:156. Scholar
  82. Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–120PubMedGoogle Scholar
  83. Xie X, Chen Z, Cao J, Guan H, Lin D, Li C, Lan T, Duan Y, Mao D, Wu W (2014) Toward the positional cloning of qBlsr5a, a QTL underlying resistance to bacterial leaf streak, using overlapping sub-CSSLs in rice. PLoS One 9(4):e95751. Scholar
  84. Xu X, Hayashi N, Wang CT, Fukuoka S, Kawasaki S, Takatsuji H, Jiang CJ (2014) Rice blast resistance gene Pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Mol Breed 34:691Google Scholar
  85. Yang Q, Balint-Kurti P, Xu M (2017a) Quantitative disease resistance: dissection and adoption in maize. Mol Plant 10:402–413PubMedGoogle Scholar
  86. Yang Q, He Y, Kabahuma M, Chaya T, Kelly A, Borrego E, Bian Y, El Kasmi F, Yang L, Teixeira P, Kolkman J, Nelson R, Kolomiets M, Dangl JL, Wisser R, Caplan J, Li X, Lauter N, Balint-Kurti P (2017b) A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nat Genet 49:1364–1372PubMedGoogle Scholar
  87. Yuan B, Shen X, Li X, Xu C, Wang S (2007) Mitogen-activated protein kinase OsMPK6 negatively regulates rice disease resistance to bacterial pathogens. Planta 226:953–960PubMedGoogle Scholar
  88. Zenbayashi-Sawata K, Fukuoka S, Katagiri S, Fujisawa M, Matsumoto T, Ashizawa T, Koizumi S (2007) Genetic and physical mapping of the partial resistance gene, pi34, to blast in rice. Phytopathology 97:598–602PubMedGoogle Scholar
  89. Zhang YX, Wang Q, Jiang L, Liu LL, Wang BX, Shen YY, Cheng XN, Wan JM (2011) Fine mapping of qSTV11KAS, a major QTL for rice stripe disease resistance. Theor Appl Genet 122:1591–1604PubMedPubMedCentralGoogle Scholar
  90. Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci U S A 102:15383–15388PubMedPubMedCentralGoogle Scholar
  91. Zhou X, Liao H, Chern M et al (2018) Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc Natl Acad Sci U S A 115:3174–3179PubMedPubMedCentralGoogle Scholar
  92. Zimmermann G, Baumlein H, Mock H, Himmelbach A, Schweizer P (2006) The multigene family encoding germin-like proteins of barley: regulation and function in basal host resistance. Plant Physiol 142:181–192PubMedPubMedCentralGoogle Scholar
  93. Zuo W, Chao Q, Zhang N, Ye J, Tan G, Li B, Xing Y, Zhang B, Liu H, Fengler KA, Zhao J, Zhao X, Chen Y, Lai J, Yan J, Xu M (2015) A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet 47:151–157PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • P. S. Shanmugavadivel
    • 1
  • K. Aravind Kumar
    • 1
  • K. R. Soren
    • 1
  • Garima Yadav
    • 1
  1. 1.Division of Plant BiotechnologyICAR-Indian Institute of Pulses ResearchKanpurIndia

Personalised recommendations