Advertisement

Expanding the Scope of Actualistic Taphonomy in Archaeological Research

  • Karen BorrazzoEmail author
Chapter
Part of the Topics in Geobiology book series (TGBI, volume 48)

Abstract

This chapter presents the application of actualistic taphonomy to the study of one of the inorganic remains produced by hominins since 3 million year BP up to historical times: lithic artifacts. As rocks are among the most durable raw materials employed by modern humans and their ancestors, differential preservation has conferred a leading role in archaeological research upon lithic artifacts. Indeed, lithics—flaked artifacts in particular—are the proxy for culture or anthropic presence most commonly used by scholars all over the world. This artifact-human relationship promoted actualistic research on flintknapping in archaeology but no similar effort was devoted to assessing alternative non-cultural (i.e. taphonomic) sources for flaked stone objects. Even though actualistic studies have already shown that taphonomic processes may produce lithic pseudomorphs, this fact is only rarely considered in archaeological practice and research design. Furthermore, it is commonly assumed that human products are different enough from any natural specimen to be detected by lithic analysts. However, the current lack of knowledge on non-cultural flaking processes and their byproducts prevents their identification in the archaeological record, thus undermining the accuracy and reliability of archaeological interpretations. This paper illustrates the contribution of actualistic taphonomy to study the inorganic remains of the archaeological record and its critical role in assessing the cultural versus natural origin of lithic specimens in Fuego-Patagonia (South America). Naturalistic and experimental research on rockfall and trampling presented here suggests that the effects of these taphonomic processes result in pseudoartifacts that progressively incorporate to the regional archaeological record.

Keywords

Lithic taphonomy Pseudoartifacts Middle-range research Experimental archaeology Fuego-Patagonia 

Notes

Acknowledgements

I am grateful to Sergio Martínez, Alejandra Rojas, Mariano Verde and Fernanda Cabrera for organizing the first Workshop on Actualistic Taphonomy in South America (Montevideo, October 9–11, 2017) and inviting me to participate in this volume. Analía Castro Esnal and Cecilia Perez de Micou directed fieldwork at CP and provided CP photograph. Thanks to María Laura Casanueva, Florencia Ronco, Lucía Gutiérrez, Cecilia Gutiérrez, and Esteban Ali Brouchoud who collaborated in field work. To the Roselló, Solsona, and Pérez del Barrio families for their kind and permanent support to archaeological studies. Luis Alberto Borrero encouraged and made insightful comments throughout all stages of this taphonomic study. This paper was draft as part of a postdoctoral study at Facultad de Filosofía y Letras, Universidad de Buenos Aires, Argentina. This research was funded by the Agencia Nacional de Promoción Científica y Tecnológica [PICT2015-2141 “Estudios de tecnología y tafonomía lítica en el sitio Casa de Piedra (Aldea Beleiro, Sudoeste de Chubut)”] and CONICET (República Argentina).

References

  1. Aimola G, Andrade C, Mota L, Parenti F (2014) Final Pleistocene and Early Holocene at Sitio do Meio, Piauí, Brazil: stratigraphy and comparison with Pedra Furada. J Lithic Stud 1(2):5–24CrossRefGoogle Scholar
  2. Álvarez MC, Alunni D (ed) (2017) New perspectives in actualistic taphonomy in Argentina: limitations, contributions, and archaeological implications. J Taph 15(1–3)Google Scholar
  3. Amick DS, Mauldin RP (1997) Effects of raw material on flake breakage patterns. Lithic Technol 22(1):18–32CrossRefGoogle Scholar
  4. Andrefsky W (2014) Fingerprinting flake production and damage processes: toward identifying human artifact characteristics. In: Graf K, Waters M, Geobel T (eds) Paleoamerican odyssey. Texas A&M Press, College Station, pp 415–428Google Scholar
  5. Andrews BW, Murtha TM, Scheetz B (2004) Approaching the Hatch Jasper Quarry from a technological perspective: a study of prehistoric stone tool production in Central Pennsylvania. Midcont J Archaeol 29(1):63–101CrossRefGoogle Scholar
  6. Aschero C, Faundes Catalán W, Bobillo F (2017) Cacao 1: lithic evidence and mobility ranges during the Pleistocene in the Atacama Puna (Antofagasta de la Sierra, Catamarca, Argentina). In: Alberti J, Borrazzo K, Buscaglia S, Castro Esnal A, Elías A, Franco N (eds) 11th international symposium on knappable materials “From tools tone to stone tools”, Book of abstracts, IMHICIHU-CONICET, Buenos Aires, p 116Google Scholar
  7. Balirán C (2014) Trampling, taphonomy, and experiments with lithic artifacts in the Southeastern Baguales Range (Santa Cruz, Argentina). Intersec Antropol 3:85–95Google Scholar
  8. Barnes A (1939) The differences between natural and human flaking on prehistoric flint implements. Am Anthropol 41(1):99–112CrossRefGoogle Scholar
  9. Barton CM, Bernabeu J, Maura JE, García O, La Roca N (2002) Dynamic landscapes, artifact taphonomy and landuse modeling in the Western Mediterranean. Geoarchaeology 17(2):155–190CrossRefGoogle Scholar
  10. Behrensmeyer AK, Damuth JD, DiMichele WA, Potts R, Sues H-D (eds) (1992) Terrestrial ecosystems through time. The University of Chicago Press, ChicagoGoogle Scholar
  11. Behrensmeyer AK, Kidwell SM (1985) Taphonomy’s contributions to paleobiology. Paleobiology 11(1):105–119CrossRefGoogle Scholar
  12. Behrensmeyer AK, Kidwell SM, Gastaldo RA (2000) Taphonomy and paleobiology. Paleobiology 26(4):103–147CrossRefGoogle Scholar
  13. Binford LR (1977) General introduction. In: Binford LR (ed) For theory building in archaeology. Academic Press, New York, pp 1–13Google Scholar
  14. Binford LR (1981) Bones: ancient men and modern myths. Academic Press, New YorkGoogle Scholar
  15. Boëda E, Clemente-Conte I, Fontugne M, Lahaye C, Pino M, Daltrini Felice G, Guidon N, Hoeltz S, Lourdeau A, Pagli M, Pessis AM, Viana S, Da Costa A, Douville E (2014) A new Late Pleistocene archaeological sequence in South America: the Vale da Pedra Furada (Piauí, Brazil). Antiquity 88:927–955CrossRefGoogle Scholar
  16. Boëda E, Rocca R, Da Costa A, Fontugne M, Hatté C, Clemente-Conte I, Santos JC, Lucas L, Felice G, Lourdeau A, Villagran X, Gluchy M, Ramos MP, Viana S, Lahaye C, Guidon N, Griggo C, Pino M, Pessis A-M, Borges C, Gato B (2016) New data on a Pleistocene archaeological sequence in South America: Toca do Sítio do Meio, Piauí, Brazil. PaleoAmerica 2(4):286–302CrossRefGoogle Scholar
  17. Bordes F (1961) Typologie du Paleolithique Ancien et Moyen. Impriméries, Delmas, BordeauxGoogle Scholar
  18. Borrazzo K (2006) Tafonomía lítica en dunas: una propuesta para el análisis de los artefactos líticos. Intersec Antropol 7:247–261Google Scholar
  19. Borrazzo K (2011a) Tafonomía lítica en la estepa patagónica: experimentación y registro arqueológico de superficie. In: Borrero LA, Borrazzo K (eds) Bosques, Montañas y cazadores: investigaciones arqueológicas en Patagonia Meridional. CONICET-IMHICIHU, Buenos Aires, pp 127–153Google Scholar
  20. Borrazzo K (2011b) Tafonomía lítica y pseudoartefactos: el caso de la península El Páramo (Tierra del Fuego, Argentina). Intersec Antropol 12:155–167Google Scholar
  21. Borrazzo K (2013) Tafonomía lítica y modelo de la dinámica eololacustre del norte de la bahía San Sebastián (Tierra del Fuego, Argentina). Rev Comechingonia 17(1):149–169Google Scholar
  22. Borrazzo K (2016) Lithic taphonomy in desert environments: contributions from Fuego-Patagonia (Argentina). Quat Int 422:18–29CrossRefGoogle Scholar
  23. Borrazzo K, Borrero LA (2015) Taphonomic and archaeological perspectives from Northern Tierra del Fuego, Argentina. Quat Int 373:96–103CrossRefGoogle Scholar
  24. Borrazzo K, Weitzel C (eds) (2014) Taphonomic approaches to the archaeological record. Intersec Antropol 15(3)Google Scholar
  25. Borrero LA (2001) Regional taphonomy. Background noise and the integrity of the archaeological record. In: Kuznar LA (ed) Ethnoarchaeology of Andean South America. Contributions to archaeological method and theory. International Monographs in Prehistory, Ann Arbor, pp 243–254Google Scholar
  26. Borrero LA (2011) La función transdisciplinaria de la arqueozoología en el siglo XXI: restos animales y más allá. Antípoda 13:267–274CrossRefGoogle Scholar
  27. Borrero LA (2014) Multi-service taphonomy. Shells, garbage and floating palimpsests. Intersec Antropol 15(3):13–20Google Scholar
  28. Borrero LA (2015) Con lo mínimo: los debates sobre el poblamiento de América del Sur. Intersec Antropol 16:5–38Google Scholar
  29. Borrero LA (2016) Ambiguity and debates on the early peopling of South America.  https://doi.org/10.1080/20555563.2015.1136498CrossRefGoogle Scholar
  30. Breuil H, Lantier R (1965) The men of the old stone age (Palaeolithic and Mesolithic). St. Martin’s Press, New YorkGoogle Scholar
  31. Carranza ME (2017) Análisis tafonómico de conjuntos líticos de superficie en la costa norte del golfo San Matías (Rio Negro, Argentina). Intersec Antropol 18(1):91–101Google Scholar
  32. Carranza Elola JJ (2015) Tecnología y tafonomía lítica del sitio quebrada Quereo: metodología para abordar conjuntos líticos ambiguos del Pleistoceno tardío en la costa de Los Vilos. Unpublished undergraduate thesis, Universidad de Chile, SantiagoGoogle Scholar
  33. Carranza Elola JJ, Méndez C (2017) Lithic taphonomy at the Quebrada de Quereo site: addressing the problem of anthropogenic ambiguity in Late Pleistocene assemblages. In Alberti J, Borrazzo K, Buscaglia S, Castro Esnal A, Elías A, Franco N (eds) 11th international symposium on knappable materials “From toolstone to stone tools”, Book of abstracts, IMHICIHU-CONICET, Buenos Aires, p 199Google Scholar
  34. Castro Esnal A, Pérez de Micou CB, Casanueva ML (2017a) Early Holocene occupation of the forest-steppe ecotone of Southern South America: evidence from Casa de Piedra de Roselló Cave (Chubut, Patagonia Argentina). Paleoamerica.  https://doi.org/10.1080/20555563.2017.1330102CrossRefGoogle Scholar
  35. Castro Esnal A, Stern C, Pérez de Micou C (2017b) Geochemical studies of archaeological obsidian artifacts from both stratigraphic and surface contexts in Aldea Beleiro Village, SW Chubut (Patagonia, Argentina). Magallania 45(1):123–135CrossRefGoogle Scholar
  36. Chlachula J, Le Blanc R (1996) Some artifact-diagnostic criteria of quartzite cobble-tool industries from Alberta. Canadian J Archaeol 20:61–74Google Scholar
  37. Cotterell B, Kamminga J (1987) The formation of flakes. Am Antiq 52(4):675–708CrossRefGoogle Scholar
  38. Cruz I (2007) Avian taphonomy: observations at two Magellanic Penguin (Spheniscus magellanicus) breeding colonies and their implications for the fossil record. J Archaeol Sci 34:1252–1261CrossRefGoogle Scholar
  39. Demeter F, Edoumba E, Duringer P, Bacon A-M, Sytha P, Bano M, Laychour V, Cheangleng M, Sari V (2010) Reinterpretation of an archaeological pebble culture from the Middle Mekong River Valley, Cambodia. Geoarchaeology 25(1):75–95CrossRefGoogle Scholar
  40. Domínguez-Rodrigo M, Fernández-López S, Alcalá L (2011) How can taphonomy be defined in the XXI Century? J Taph 9:1–13Google Scholar
  41. Dorren LK (2003) A review of rockfall mechanics and modeling approaches. Prog Phys Geogr 27(1):69–87CrossRefGoogle Scholar
  42. Duvall JG, Venner WT (1979) A statistical analysis of the lithics from the calico site (SBCM 1500A), California. J Field Archaeol 6(4):455–462Google Scholar
  43. Eren MI, Durant A, Neudorf C, Haslam M, Shipton C, Bora J, Korisettar R, Petraglia M (2010) Experimental examination of animal trampling effects on artifact movement in dry and water saturated substrates: a test case from South India. J Archaeol Sci 37:3010–3021CrossRefGoogle Scholar
  44. Fariña RA, Tambusso PS, Varela L, Czerwonogora A, Di Giacomo M, Musso M, Bracco R, Gascue A (2014) Arroyo del Vizcaíno, Uruguay: a fossil-rich 30-ka-old megafaunal locality with cut-marked bones. P Roy Soc B (Biol Sci) 281.  https://doi.org/10.1098/rspb.2013.2211CrossRefGoogle Scholar
  45. Fiedel SJ (2017) Did monkeys make the pre-clovis pebble tools of Northeastern Brazil? PaleoAmerica 3(1):6–12.  https://doi.org/10.1080/20555563.2016.1273000CrossRefGoogle Scholar
  46. Garvey R, Mena F (2016) Confronting complexities of artifact-geofact debates: re-analysis of a coarse volcanic rock assemblage from Chilean Patagonia. Lithic Technol 41:114–129CrossRefGoogle Scholar
  47. Gifford DP (1981) Taphonomy and paleoecology: a critical review of archeology’s sister discipline. Adv Archaeol Method Theor 4:365–438CrossRefGoogle Scholar
  48. Gifford-Gonzalez D (1989) Ethnographic analogues for interpreting modified bones: some cases from East Africa. In: Bonnichsen R, Sorg M (eds) Bone modification. University of Maine, Institute for Quaternary Studies, Orono, pp 179–246Google Scholar
  49. Gillespie JD, Tupakka S, Cluney C (2004) Distinguishing Between naturally and culturally flaked cobbles: a test case from Alberta, Canada. Geoarchaeology 19(7):615–633CrossRefGoogle Scholar
  50. Goodman ME (1944) The physical properties of stone tool materials. Am Antiq 9:415–433CrossRefGoogle Scholar
  51. Gutiérrez MA, Miotti L, Barrientos G, Mengoni Goñalons G, Salemme M (2007) Taphonomy and zooarchaeology in Argentina. BAR International Series, OxfordGoogle Scholar
  52. Haynes CV (1973) The calico site: artifacts or geofacts? Science 181:305–310CrossRefGoogle Scholar
  53. Hiscock P (1985) The need for a taphonomic perspective in stone artefact analysis. Queensland Archaeol Res 2:82–95Google Scholar
  54. Hosfield R, Chambers J (2003) Flake modifications during fluvial transportation: three cautionary tales. Lithics 24:57–65Google Scholar
  55. Johnson L, Behm JA, Bordes F, Cahen D, Crabtree DE, Dincauze DF, Hay CA, Hayden B, Hester TR, Katz PR, Knudson R, McManamon FP, Malik SC, Müller-Beck H, Newcomer MH, Paddayya K, Price-Beggerly P, Ranere AJ, Sankalia HD, Sheets PD (1978) A history of flint-knapping experimentation, 1838-1976 [and comments and reply]. Curr Anthropol 19(2):337–372CrossRefGoogle Scholar
  56. Kowalewski M (1999) Actuopaleontology: the strength of its limitations. Acta Paleontol Pol 44(4):452–454Google Scholar
  57. Kowalewski M, Labarbera M (2004) Actualistic taphonomy: death, decay, and disintegration in contemporary settings. Palaios 19:423–427CrossRefGoogle Scholar
  58. Lahaye C, Hernandez M, Boëda E, Felice GD, Guidon N, Hoeltz S, Lourdeau A, Pagli M, Pessis AM, Rasse M, Viana S (2013) Human occupation in South America by 20,000 BC: the Toca da Tira Peia site, Piauí, Brazil. J Archaeol Sci 40:2840–2847CrossRefGoogle Scholar
  59. Lin S, Rezek Z, Dibble H (2017) Experimental design and experimental inference in stone artifact archaeology. J Archaeol Method Theory.  https://doi.org/10.1007/s10816-017-9351-1CrossRefGoogle Scholar
  60. Lopinot N, Ray J (2007) Trampling experiments in the search for the earliest Americans. Am Antiq 72(4):771–782CrossRefGoogle Scholar
  61. Luedtke B (1986) An experiment in natural fracture. Lithic Technol 15(2):55–60CrossRefGoogle Scholar
  62. Lyman RL (1984) Broken bones, bone expediency tools and bone pseudotools: lessons from the blast zone around Mount St. Helens, Washington. Am Antiq 49(2):315–333CrossRefGoogle Scholar
  63. Lyman RL (1994) Vertebrate taphonomy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  64. Mallol C, Bertran P (eds) (2010) Geoarchaeology and taphonomy. Quat Int 214Google Scholar
  65. Marean C (1995) Of taphonomy and zooarchaeology. Evol Anthropol 4(2):64–72CrossRefGoogle Scholar
  66. Mason RJ (1965) Makapansgat limeworks fractured stone objects and natural fracture in Africa. S Afr Archaeol B 20(77):3–16CrossRefGoogle Scholar
  67. Massigoge A, González M (ed) (2012) Taphonomic approaches in archaeology: current topics and methods from Southern South America. Quat Int 278Google Scholar
  68. McBrearty S, Bishop L, Plummer T, Dewar R, Conard N (1998) Tools underfoot: human trampling as an agent of lithic artifact edge modification. Am Antiq 63(1):108–122CrossRefGoogle Scholar
  69. Méndez Muñoz V (2015) Historias Depositacionales de conjuntos líticos en la Transición Pleistoceno-Holoceno en el Sitio Valiente, Provincia del Choapa. Unpublished undergraduate thesis, Universidad de Chile, SantiagoGoogle Scholar
  70. Nash DT (1993) Distinguishing stone artifacts from naturefacts created by rockfall processes. In Goldberg P, Nash DT, Petraglia MD (eds) Formation processes in archaeological context, Monographs in world prehistory, vol 17. Prehistory Press, Madison, pp 125–138Google Scholar
  71. Parenti F (2015) Old and new on the same site: putting Vale de Pedra Furada into a wider context. A comment on Lahaye et al. 2015. Quat Chronol 30:48–53Google Scholar
  72. Pobiner BL, Brown DR (2005) Applying actualism: considerations for future research. J Taph 3(2):57–65Google Scholar
  73. Prentiss AM, Walsh MJ, Barnett KD, Murphy MM, Kuenstle J (2015) The coarse volcanic rock industry at Rio Ibáñez 6 West, Aisén Region, Patagonian Chile. Lithic Technol 40(2):112–127CrossRefGoogle Scholar
  74. Prentiss AM, Barnett KD, Walsh MJ (2016) The coarse volcanic industry at the Río Ibáñez 6 West Site, Chilean Patagonia: assessing geogenic versus anthropogenic processes. Lithic Technol 41(2):130–138CrossRefGoogle Scholar
  75. Ritter MDN, De Francesco CG, Erthal F, Hassan GS, Tietze E, Martínez S (2016) Manifesto of the South American School of (Actualistic) Taphonomy. Palaios 31:20–24CrossRefGoogle Scholar
  76. Suárez R., Borrero LA, Borrazzo K, Ubilla M, Martínez S, Perea D (2014) Archaeological evidences are still missing: comment on Fariña et al. Arroyo del Vizcaíno Site, Uruguay. P Roy Soc B (Biol Sci) 281:20140449.  https://doi.org/10.1098/rspb.2014.0449CrossRefGoogle Scholar
  77. Thiébaut C, Coumont M-P, Averbouh A (2010) The taphonomic approach: an archaeological necessity. In Thiébaut C, Coumont M-P, Averbouh A (eds) Mise en commun des approaches en taphonomie. Actes du workshop Nº 16, X Congress International de I’UISPP, pp 21–28Google Scholar
  78. Valin L, Masson B, Caspar JP (2001) Taphonomy at Hermies, France: a mousterian knapping site in a Loessic Context. J Field Archaeol 28(3/4):419–436CrossRefGoogle Scholar
  79. Warren SH (1914) The experimental investigation of flint fracture and its application to problems of human implements. J Roy Anthropol Inst Great Britain Ireland 44:412–450CrossRefGoogle Scholar
  80. Weitzel C, Borrazzo K, Ceraso A, Balirán C (2014) Trampling fragmentation potential of lithic artifacts: an experimental approach. Intersec Antropol 3:97–110Google Scholar
  81. Wiśniewski A, Badura J, Salamon y, Lewandowski J (2014) The alleged Early Palaeolithic artefacts are in reality geofacts: a revision of the site of Kończyce Wielkie 4 in the Moravian Gate, South Poland. J Archaeol Sci 52:189–203CrossRefGoogle Scholar
  82. Yeshurun R, Bar-Oz G, Kaufman D, Weinstein-Evron M (2014) Purpose, permanence, and perception of 14.000-year-old architecture contextual taphonomy of food refuse. Curr Anthropol 55(5):591–618Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.CONICETInstituto Multidisciplinario de Historia y Ciencias Humanas (CONICET-IMHICIHU)Buenos AiresArgentina
  2. 2.Facultad de Filosofía y LetrasUniversidad de Buenos Aires (FFyL-UBA)Buenos AiresArgentina

Personalised recommendations