Advertisement

Taphonomy of Recent Bioclastic Deposits from the Southern Brazil Shelf: Stratigraphic Potential

  • Fernando ErthalEmail author
  • Matias do Nascimento Ritter
Chapter
Part of the Topics in Geobiology book series (TGBI, volume 48)

Abstract

In the Southern Brazil Shelf (SBS), surface bioclastic concentrations are associated with putative paleo-shorelines formed where wave ravinement surfaces are probably present. From the late Last Glacial Maximum, the SBS can be considered a sediment-starved passive margin continental shelf, with its morphostructural development fairly known. There, fourteen molluscan shell samples from near shelf-break deposits (“distal shell-rich”), eleven from proximal, low depth bioclastic deposits (“proximal shell-rich”) and ten samples from sandy substrate (“shell-poor”) were evaluated for taphonomic damage accordingly to updated protocols. Multivariate statistical analysis showed significant differences between the three groups of shelly samples. Low-intensity damage states (such as natural bright and ornamentation) dominate samples from the distal shell-rich deposit, whereas the inverse occurs in the proximal deposit (samples from the shell-poor locations present an intermediate damage pattern). This pattern is consistent either with onlap/toplap and backlap shell bed formation, according to characteristics determined in the literature. The condition of these three areas may reflect degrees of exposure at the taphonomically-active zone, the magnitude of time averaging and duration of shell accumulation, and even the lack of shelf accommodation space, which in turn is related to glacioeustatic sea-level oscillations.

Keywords

Time-averaging Stratigraphic paleobiology Coquina Shell preservation Onlap deposits 

Notes

Acknowledgements

This paper greatly benefited from comments and discussion with several people: I. C. S. Corrêa and E. R. Beltram (Universidade Federal do Rio Grande do Sul), R. S. Horodyski (Universidade do Vale do Rio dos Sinos), M. L. Assine (Universidade Estadual Paulista at Rio Claro), and M. G. Simões (Universidade Estadual Paulista at Botucatu). Brazil funding agencies (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES, Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq), and Petroleum National Agency (ANP) partly funded this research.

References

  1. Abbott ST (1997) Mid-cycle condensed shellbeds from mid-Pleistocene cyclothems, New Zealand: implications for sequence architecture. Sedimentology 44:805–824CrossRefGoogle Scholar
  2. Abbott ST, Naish TR, Carter RM, Pillans BJ (2005) Sequence stratigraphy of the Nukumaruan Stratotype (Pliocene–Pleistocene, c. 2.08–1.63 Ma), Wanganui Basin, New Zealand. J R Soc NZ 35:123–150CrossRefGoogle Scholar
  3. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  4. Angulo RJ, Lessa GC, Souza MC (2006) A critical review of Mid- to Late Holocene sea-level fluctuations on the eastern Brazilian coastline. Quat Sci Rev 25:486–506CrossRefGoogle Scholar
  5. Anjos-Zerfass GS, Souza PA, Chemale Jr F (2008) Biocronoestratigrafia da Bacia de Pelotas: estado atual e aplicação na geologia do petróleo. Rev Bras Geocienc 38:47–62CrossRefGoogle Scholar
  6. Best MMR, Ku TCW, Kidwell SM, Walter LM (2007) Carbonate preservation in shallow marine environments: unexpected role of tropical siliciclastics. J Geol 115:437–456CrossRefGoogle Scholar
  7. Brett CE (1995) Sequence stratigraphy, biostratigraphy and taphonomy in shallow marine environments. Palaios 10:597–616CrossRefGoogle Scholar
  8. Brett CE (1998) Sequence stratigraphy, paleoecology and evolution: biotic clues and responses to sea-level fluctuations. Palaios 13:241–262CrossRefGoogle Scholar
  9. Cai WJ, Chen F, Powell EN, Walker SE, Parsons-Hubbard KM, Staff GM, Wang Y, Aston-Alcox KA, Callender WR, Brett CE (2006) Preferential dissolution of carbonate shells driven by petroleum seep activity in the Gulf of Mexico. Earth Planet Sci Lett 248:227–243CrossRefGoogle Scholar
  10. Cantalamessa G, Di Celma C, Ragaini L (2005) Sequence stratigraphy of the Punta Ballena Member of the Jama Formation (Early Pleistocene, Ecuador): insights from integrated sedimentologic, taphonomic and paleoecologic analysis of molluscan shell concentrations. Paleogeogr Paleoclimatol Paleoecol 216:1–25CrossRefGoogle Scholar
  11. Cattaneo A, Steel RJ (2003) Transgressive deposits: a review of their variability. Earth-Sci Rev 62:187–228CrossRefGoogle Scholar
  12. Catuneanu O, Galloway WE, Kendall CGSC, Miall AD, Posamentier HW, Strasser A, Tucker ME (2011) Sequence stratigraphy: methodology and nomenclature. Newsl Stratigr 44:173–245CrossRefGoogle Scholar
  13. Courville P, Collin PY (2002) Taphonomic sequences—a new tool for sequence stratigraphy. Geology 30:511–514CrossRefGoogle Scholar
  14. Corrêa ICS (1996) Les variations du niveau de la mer durant les derniers 17.500 ans BP: exemple de la plate-forme continentale du Rio Grande do Sul-Brésil. Mar Geol 130:163–178CrossRefGoogle Scholar
  15. Corrêa ICS, Ayup-Zouain RN, Weschenfelder J, Tomazelli LJ (2008) Áreas fonte dos minerais pesados e sua distribuição sobre a plataforma continental sul-brasileira, Uruguaia e norte-argentina. Pesquisas 35:137–150Google Scholar
  16. Corrêa ICS, Medeanic S, Weschenfelder J, Nunes JC, Baitelli R (2014) The palaeo-drainage of the La Plata River in Southern Brazil continental shelf. Rev Bras Geofis 32:259–271CrossRefGoogle Scholar
  17. Craig GY, Hallam A (1963) Size-frequency and growth-ring analyses of Mytius edulis and Cardium edule and their paleoecological significance. Paleontology 6:731–750Google Scholar
  18. Cutler AH, Flessa KW (1995) Bioerosion, dissolution and precipitation as taphonomic agents at high and low latitudes. Senckenb Marit 25:115–121Google Scholar
  19. Davies DJ, Powell EN, Stanton RJ Jr (1989) Relative rates of shell dissolution and net sediment accumulation—a commentary: can shell beds form by the gradual accumulation of biogenic debris on the sea floor? Lethaia 22:207–212CrossRefGoogle Scholar
  20. Dexter TA, Kaufman DS, Krause RA Jr, Barbour Wood SL, Simões MG, Huntley JW, Yanes Y, Romanek CS, Kowalewski M (2014) A continuous multi-millennial record of surficial bivalve mollusk shells from the São Paulo Bight, Brazilian shelf. Quatern Res 81:274–283CrossRefGoogle Scholar
  21. Dillenburg SR, Barboza EG (2014) The strike-fed sandy coast of Southern Brazil. In: Martini IP, Wanless HR (eds) Sedimentary coastal zones from high to low latitudes: similarities and differences. Geological Society, London, Special Publications, 388, pp 333–352CrossRefGoogle Scholar
  22. Dominguez JG, Kosnik MA, Allen AP, Hua Q, Jacob DE, Kaufman DS, Whitacre K (2016) Time-averaging and stratigraphic resolution in death assemblages and Holocene deposits: Sydney Harbour’s molluscan record. Palaios 31:563–574CrossRefGoogle Scholar
  23. Figueiredo AG (1975) Geologia dos depósitos calcários biodetríticos da Plataforma Continental do Rio Grande do Sul. Programa de Pós-Graduação em Geociências, Universidade Federal do Rio Grande do Sul, M.Sc. dissertationGoogle Scholar
  24. Figueiredo AG, Tessler MG (2004) Topografia e composição do substrato marinho da Região Sudeste-Sul do Brasil. Série Documentos REVIZEE: Score Sul. Instituto Oceanografico, São PauloGoogle Scholar
  25. Fürsich FT, Aberhan M (1990) Significance of time-averaging for palaeocommunity analysis. Lethaia 23(2):143–152CrossRefGoogle Scholar
  26. Fürsich FT, Oschmann W (1993) Shell beds as tools in basin analysis: the Jurassic of Kachchh, western India. J Geol Soc 150:169–185CrossRefGoogle Scholar
  27. Fürsich FT, Pandey DK (2003) Sequence stratigraphic significance of sedimentary cycles and shell concentrations in the Upper Jurassic-Lower Cretaceous of Kachchh, western India. Paleogeogr Paleoclimatol Paleoecol 193:285–309CrossRefGoogle Scholar
  28. Glover CP, Kidwell SM (1993) Influence of organic matrix on the post-mortem destruction of molluscan shells. J Geol 101:729–747CrossRefGoogle Scholar
  29. Hendy AJW, Kamp PJJ, Vonk AJ (2006) Cool-water shell bed taphofacies from Miocene-Pliocene shelf sequences in New Zealand: utility of taphofacies in sequence stratigraphic analysis. In: Pedley HM, Carannante G (eds) Cool-water carbonates: depositional systems and palaeoenvironmental controls. Geological Society, London, Special Publications 255, pp 283–305Google Scholar
  30. Kidwell SM (1985) Palaeobiological and sedimentological implications of fossil concentrations. Nature 318:457–460CrossRefGoogle Scholar
  31. Kidwell SM (1986) Models for fossil concentrations: paleobiologic implications. Paleobiology 12:6–24CrossRefGoogle Scholar
  32. Kidwell SM (1989) Stratigraphic condensation of marine transgressive records: origin of major shell deposits from the Miocene of Maryland. J Geol 97:1–24CrossRefGoogle Scholar
  33. Kidwell SM (1991) Condensed deposits in siliciclastic sequences: expected and observed feature. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 682–695Google Scholar
  34. Kidwell SM (2013) Time-averaging and fidelity of modern death assemblages: building a taphonomic foundation for conservation palaeobiology. Palaeontology 56:487–522CrossRefGoogle Scholar
  35. Kondo Y, Abbott ST, Kitamura A, Kamp PJJ, Naish TR, Kamataki T, Saul GS (1998) The relationship between shellbed type and sequence architecture: examples from Japan and New Zealand. Sediment Geol 122:109–127CrossRefGoogle Scholar
  36. Kowsmann RO, Costa MPA (1979) Sedimentação Quaternária da margem continental Brasileira e das áreas oceânicas adjacentes. PETROBRAS, Rio de Janeiro, Projeto REMAC Series 8Google Scholar
  37. Kowsmann RO, Costa MPA, Vicalvi MA, Coutinho MGM, Gambôa LAP (1977) Modelo da sedimentação holocênica na plataforma continental sul brasileira. Série Projeto REMAC 2:7–26Google Scholar
  38. Krause RA, Barbour SL, Kowalewski M, Kaufman DS, Romanek CS, Simões MG, Wehmiller JF (2010) Quantitative comparisons and models of time-averaging in bivalve and brachiopod shell accumulations. Paleobiology 36:428–452CrossRefGoogle Scholar
  39. Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  40. Lescinsky HL, Edinger E, Risk MJ (2002) Mollusc shell encrustation and bioerosion rates in a modern epeiric sea: taphonomy experiments in the Java Sea, Indonesia. Palaios 17:171–191CrossRefGoogle Scholar
  41. Li X, Droser ML (1999) Lower and Middle Ordovician shell beds from the Basin and Range province of the western United States (California, Nevada, and Utah). Palaios 14:215–233CrossRefGoogle Scholar
  42. Martínez S, Rojas A (2013) Relative sea level during the Holocene in Uruguay. Paleogeogr Paleoclimatol Paleoecol 374:123–131CrossRefGoogle Scholar
  43. Nagai RH, Sousa SHM, Mahiques MM (2014) The southern Brazil shelf. In: Chiocci FL, Chivas AR (eds) Continental shelves of the world: their evolution during the last glacio-eustatic cycle. Geological Society, London, Memoirs, 41, pp 305–313Google Scholar
  44. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Wagner H (2019) Vegan: community ecology package. R package version 2.5-5. https://CRAN.R-project.org/package=vegan
  45. Olszewski TD (2004) Modeling the influence of taphonomic destruction, reworking, and burial on time-averaging in fossil accumulations. Palaios 19:39–50CrossRefGoogle Scholar
  46. Parsons-Hubbard KM, Brett CE, Walker SE (2011) Taphonomic field experiments and the role of the shelf and slope experimental taphonomy initiative. Paleogeogr Paleoclimatol Paleoecol 312:195–208CrossRefGoogle Scholar
  47. Patzkowsky ME, Holland SM (2012) Stratigraphic paleobiology: understanding the distribution of fossil taxa in time and space. The University of Chicago Press, ChicagoCrossRefGoogle Scholar
  48. Powell EN, Staff GM, Callender WR, Ashton-Alcox KA, Brett CE, Parsons-Hubbard KM, Walker SE, Raymond A (2011) Taphonomic degradation of molluscan remains during thirteen years on the continental shelf and slope of the northwestern Gulf of Mexico. Paleogeogr Paleoclimatol Paleoecol 312:209–232CrossRefGoogle Scholar
  49. Powell EN, Hu X, Cai WJ, Ashton-Alcox KA, Parsons-Hubbard KM, Walker SE (2012) Geochemical controls on carbonate shell taphonomy in northern gulf of Mexico Continental Shelf and Slope sediments. Palaios 27:571–584CrossRefGoogle Scholar
  50. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  51. Ritter MN, Erthal F, Coimbra JC (2013) Taphonomic signatures in molluscan fossil assemblages from the Holocene lagoon system in the northern part of the coastal plain, Rio Grande do Sul State, Brazil. Quat Int 305:5–14CrossRefGoogle Scholar
  52. Ritter MN, Erthal F, Coimbra JC (2019) Depth as an overarching environmental variable that modulates the preservation potential and temporal resolution of shelly taphofacies. Lethaia 52:44–56Google Scholar
  53. Ritter MN, Erthal F, Kosnik MA, Coimbra JC, Kaufman DS (2017) Spatial variation in the temporal resolution of subtropical shallow-water molluscan death assemblages. Palaios 32:559–571CrossRefGoogle Scholar
  54. Scarponi D, Kaufman DS, Amorosi A, Kowalewski M (2013) Sequence stratigraphy and the resolution of the fossil record. Geology 41:239–242CrossRefGoogle Scholar
  55. Simões MG, Kowalewski M (1998) Shell beds as paleoecological puzzles: a case study from the Upper Permian of the Paraná Basin, Brazil. Facies 38:175–196CrossRefGoogle Scholar
  56. Smith AM, Nelson C (2003) Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits. Earth-Sci Rev 63:1–31CrossRefGoogle Scholar
  57. Speyer SE, Brett CE (1986) Trilobite taphonomy and Middle Devonian Tafofacies. Palaios 1:312–327CrossRefGoogle Scholar
  58. Tomašových A, Zuschin M (2009) Variation in brachiopod preservation along a carbonate shelf-basin transect (Red Sea and Gulf of Aden): environmental sensitivity and tafofacies. Palaios 24:697–716CrossRefGoogle Scholar
  59. Tomašových A, Fürsich FT, Olszewski TD (2006) Modeling shelliness and alteration in shell beds: variation in hardpart input and burial rates leads to opposing predictions. Paleobiology 32:278–298CrossRefGoogle Scholar
  60. Tomazelli LJ, Villwock JA (2000) O Cenozoico no Rio Grande do Sul: Geologia da Planície Costeira. In: Holz M, De Ros LF (eds) Geologia do Rio Grande do Sul, pp 375–406, CIGO/UFRGSGoogle Scholar
  61. Vicalvi MA (1977) Sedimentos quaternários da plataforma continental e talude do sul do Brasil: estratigrafia e curvas paleoclimáticas. PETROBRAS, Rio de Janeiro, Série Projeto REMAC 2:27–76Google Scholar
  62. Villwock JA, Tomazelli LJ (1995) Geologia costeira do Rio Grande do Sul. Notas Técnicas 8:1–45Google Scholar
  63. Villwock JA, Tomazelli LJ, Loss EL, Dehnhardt EA, Horn Filho NO, Bachi FA, Dehnhardt BA (1986) Geology of the Rio Grande do Sul Coastal Province. Quat South Am Antarct Pen 4:79–97Google Scholar
  64. Weschenfelder J, Baitelli R, Corrêa ICS, Bortolin EC, Santos CB (2014) Quaternary incised valleys in Southern Brazil coastal zone. J South Am Earth Sci 55:83–93CrossRefGoogle Scholar
  65. Young HR, Nelson CR (1985) Biodegradation of temperate-water skeletal carbonates by boring sponges on the Scott shelf, British Columbia, Canada. Mar Geol 65:33–45CrossRefGoogle Scholar
  66. Zecchin M, Catuneanu O (2013) High-resolution sequence stratigraphy of clastic shelves I: units and bounding surfaces. Mar Pet Geol 39:1–25CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Departamento de Paleontologia e Estratigrafia, Instituto de Geociências, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Centro de Estudos Costeiros, Limnológicos e Marinhos, Campus Litoral Norte, Universidade Federal do Rio Grande do SulImbéBrazil

Personalised recommendations