Advertisement

Logic Based Look-Ahead for the Execution of Multi-perspective Declarative Processes

  • Martin Käppel
  • Nicolai SchützenmeierEmail author
  • Stefan Schönig
  • Lars Ackermann
  • Stefan Jablonski
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 352)

Abstract

In declarative process models all the activities which do not violate a constraint of the process model can be executed. Consequently, the number of viable paths is large. In turn, when considering multiple perspectives during execution, i.e., constraints on resources and data values, it may happen that the execution of activities or the change of data values may result in the non-executability of crucial activities. Execution engines for single-perspective declarative process models have been extensively discussed in research where, among others look-ahead functionality has been investigated. Execution approaches for multi-perspective declarative models that involve constraints on data and resources, however, are less mature. In this paper, we introduce a logic based look-ahead approach for the execution of multi-perspective declarative processes. We use the look-ahead for simulating a fixed number of execution steps with regard to the existing trace and the choice of the next step. The look-ahead allows for estimating all consequences and effects of certain decisions at any time of process execution. We develop an algorithm for trace generation and checking traces using the logic language Alloy. We extensively evaluate our approach by means of a practical example and give some advice for further optimizations.

Keywords

Declarative processes Multi-perspective Look-ahead 

References

  1. 1.
    Dumas, M., Rosa, M.L., Mendling, M.L., Reijers, H.A.: Fundamentals of Business Process Management, 2nd edn. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-662-56509-4CrossRefGoogle Scholar
  2. 2.
    Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: full supportfor loosely-structured processes. In: IEEE EDOC Conference 2007, pp. 287–300 (2007)Google Scholar
  3. 3.
    Hildebrandt, T.T., Mukkamala, R.R., Slaats, T., Zanitti, T.: Contracts for cross-organizational workflows as timed dynamic condition response graphs. J. Log. Algebr. Program. 82(5–7), 164–185 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Zeising, M., Schönig, S., Jablonski, S.: Towards a common platform for the support of routine and agile business processes. In: Collaborative Computing: Networking, Applications and Worksharing (2014)Google Scholar
  5. 5.
    Schönig, S., Ackermann, L., Jablonski, S.: Towards an implementation of data and resource patterns in constraint-based process models. In: Modelsward, pp. 271–278 (2018)Google Scholar
  6. 6.
    Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering simulation models. Inf. Syst. 34(3), 305–327 (2009)CrossRefGoogle Scholar
  7. 7.
    de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Inf. Syst. 56, 235–257 (2016)CrossRefGoogle Scholar
  8. 8.
    Baumann, M., Baumann, M.H., Schönig, S., Jablonski, S.: Resource-aware process model similarity matching. In: Toumani, F., et al. (eds.) ICSOC 2014. LNCS, vol. 8954, pp. 96–107. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22885-3_9CrossRefGoogle Scholar
  9. 9.
    Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-perspective declarative process models. Expert Syst. Appl. 65, 194–211 (2016)CrossRefGoogle Scholar
  10. 10.
    Smedt, J.D., Weerdt, J.D., Serral, E., Vanthienen, J.: Improving understandability of declarative process models by revealing hidden dependencies. CAiSE 2016, 83–98 (2016)Google Scholar
  11. 11.
    Smedt, J.D., Weerdt, J.D., Serral, E., Vanthienen, J.: Discovering hidden dependencies in constraint-based declarative process models for improving understandability. Inf. Syst. 74(Part), 40–52 (2018)CrossRefGoogle Scholar
  12. 12.
    Ackermann, L., Schönig, S., Petter, S., Schützenmeier, N., Jablonski, S.: Execution of multi-perspective declarative process models. In: Panetto, H., Debruyne, C., Proper, H., Ardagna, C., Roman, D., Meersman, R. (eds.) OTM 2018. LNCS, vol. 11230, pp. 154–172. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-02671-4_9CrossRefGoogle Scholar
  13. 13.
    van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: balancing between flexibility and support. CSRD 23, 99–113 (2009)Google Scholar
  14. 14.
    Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.: Declarative specification and verification of service choreographies. ACM Trans. Web 4(1), 3 (2010)CrossRefGoogle Scholar
  15. 15.
    Burattin, A., Maggi, F.M., van der Aalst, W.M., Sperduti, A.: Techniques for a posteriori analysis of declarative processes. In: EDOC, Beijing, pp. 41–50. IEEE, September 2012Google Scholar
  16. 16.
    Bussler, C.: Analysis of the organization modeling capability of workflow-management-systems. In: PRIISM 1996 Conference Proceedings, pp. 438–455 (1996)Google Scholar
  17. 17.
    Ackermann, L., Schönig, S., Jablonski, S.: Simulation of multi-perspective declarative process models. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 61–73. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58457-7_5CrossRefGoogle Scholar
  18. 18.
    Jackson, D.: Software Abstractions: logic, language, and analysis. MIT press, Cambridge (2012)Google Scholar
  19. 19.
    Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic programming to process mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78469-2_16CrossRefzbMATHGoogle Scholar
  20. 20.
    Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00899-3_16CrossRefGoogle Scholar
  21. 21.
    Westergaard, M., Maggi, F.M.: Looking into the future. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 250–267. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33606-5_16CrossRefGoogle Scholar
  22. 22.
    Montali, M., Chesani, F., Mello, P., Maggi, F.M.: Towards data-aware constraints in declare. In: SAC, pp. 1391–1396. ACM (2013)Google Scholar
  23. 23.
    Schönig, S., Di Ciccio, C., Maggi, F.M., Mendling, J.: Discovery of multi-perspective declarative process models. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 87–103. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46295-0_6CrossRefGoogle Scholar
  24. 24.
    Skydanienko, V., Francescomarino, C.D., Maggi, F.: A tool for generating event logs from multi-perspective declare models. In: BPM, Demos (2018)Google Scholar
  25. 25.
    Montali, M.: Specification and Verification of Declarative Open Interaction Models: A Logic-Based Approach, vol. 56. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14538-4CrossRefzbMATHGoogle Scholar
  26. 26.
    Slaats, T., Mukkamala, R.R., Hildebrandt, T., Marquard, M.: Exformatics declarative case management workflows as DCR graphs. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 339–354. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40176-3_28CrossRefGoogle Scholar
  27. 27.
    Debois, S., Hildebrandt, T.T., Laursen, P.H., Ulrik, K.R.: Declarative process mining for DCR graphs. In: SAC, pp. 759–764 (2017)Google Scholar
  28. 28.
    Goedertier, S., Haesen, R., Vanthienen, J.: Rule-based business process modelling and enactment. Int. J. Bus. Process Integr. Manag. 3(3), 194–207 (2008)CrossRefGoogle Scholar
  29. 29.
    Haisjackl, C., et al.: Understanding declare models: strategies, pitfalls, empirical results. Software Syst. Model. 15, 325–352 (2016)CrossRefGoogle Scholar
  30. 30.
    Ciccio, C.D., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies and redundancies in declarative process models. Inf. Syst. 64, 425–446 (2017)CrossRefGoogle Scholar
  31. 31.
    Smedt, J.D., Weerdt, J.D., Vanthienen, J., Poels, G.: Mixed-paradigm process modeling with intertwined state spaces. Bus. Inf. Syst. Eng. 58(1), 19–29 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martin Käppel
    • 1
  • Nicolai Schützenmeier
    • 1
    Email author
  • Stefan Schönig
    • 1
  • Lars Ackermann
    • 1
  • Stefan Jablonski
    • 1
  1. 1.Institute for Computer ScienceUniversity of BayreuthBayreuthGermany

Personalised recommendations