Towards Ontological Support for Journalistic Angles

  • Andreas L. OpdahlEmail author
  • Bjørnar Tessem
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 352)


Journalism relies more and more on information and communication technology (ICT). New journalistic ICT platforms continuously harvest potentially news-related information from the internet and try to make it useful for journalists. Because the information sources and formats vary widely, knowledge graphs are emerging as a preferred technology for integrating, enriching, and preparing journalistic information. The paper explores how journalistic knowledge graphs can be augmented with support for news angles, in order to help journalists detect newsworthy events and present them in ways that will interest the intended audience. We argue that finding newsworthy angles on news-related information is important as an example of a more general problem in information science: that of finding the most interesting events and situations in big data sets and presenting those events and situations in the most interesting ways.


Computational journalism ICT tool for journalists News platforms Newsroom systems Knowledge graphs Ontology 



The News Angler project is funded by the Norwegian Research Council’s IKTPLUSS programme as project 275872.


  1. 1.
    Allemang, D., Hendler, J.: Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL. Elsevier, Waltham (2011)Google Scholar
  2. 2.
    Berven, A., Christensen, O.A., Moldeklev, S., Opdahl, A.L., Villanger, K.J.: News Hunter: building and mining knowledge graphs for newsroom systems. In: NOKOBIT, vol. 26 (2018)Google Scholar
  3. 3.
    Diakopoulos, N.: Computational journalism and the emergence of news platforms. In: The Routledge Companion to Digital Journalism Studies. Routledge, Taylor and Francis Group, London (2016)CrossRefGoogle Scholar
  4. 4.
    Fernández, N., Fuentes, D., Sánchez, L., Fisteus, J.A.: The NEWS ontology: design and applications. Expert. Syst. Appl. 37(12), 8694–8704 (2010)CrossRefGoogle Scholar
  5. 5.
    Gallofré, M., Nyre, L., Opdahl, A.L., Tessem, B., Trattner, C., Veres, C.: Towards a big data platform for news angles. In: 4th Norwegian Big Data Symposium – NOBIDS 2018, November 2018Google Scholar
  6. 6.
    Gangemi, A., Presutti, V., Recupero, D.R., Nuzzolese, A.G., Draicchio, F., Mongiovì, M.: Semantic web machine reading with FRED. Semant. Web 8(6), 873–893 (2017)CrossRefGoogle Scholar
  7. 7.
    García, R., Perdrix, F., Gil, R., Oliva, M.: The semantic web as a newspaper media convergence facilitator. Web Semant. Sci. Serv. Agents World Wide Web 6(2), 151–161 (2008)CrossRefGoogle Scholar
  8. 8.
    Gervas, P.: Computational approaches to storytelling and creativity. AI Mag. 30(3), 49–62 (2009)CrossRefGoogle Scholar
  9. 9.
    Heravi, B.R., McGinnis, J.: Introducing social semantic journalism. J. Media Innov. 2(1), 131–140 (2015)CrossRefGoogle Scholar
  10. 10.
    Hogenboom, F., Frasincar, F., Kaymak, U., De Jong, F.: An overview of event extraction from text. In: Workshop on Detection, Representation, and Exploitation of Events in the Semantic Web (DeRiVE 2011) at 10th ISWC 2011, vol. 779, pp. 48–57. Citeseer (2011)Google Scholar
  11. 11.
    International Press Telecommunications Council. Media Topics: Subject taxonomy for the media – the successor of the Subject CodesGoogle Scholar
  12. 12.
    Jackoway, A., Samet, H., Sankaranarayanan, J.: Identification of live news events using Twitter. In: Proceedings of 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks, pp. 25–32. ACM (2011)Google Scholar
  13. 13.
    Latar, N.L.: The robot journalist in the age of social physics: the end of human journalism? In: Einav, G. (ed.) The New World of Transitioned Media. TEICE, pp. 65–80. Springer, Cham (2015). Scholar
  14. 14.
    Leban, G., Fortuna, B., Brank, J., Grobelnik, M.: Event Registry: learning about world events from news. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 107–110. ACM (2014)Google Scholar
  15. 15.
    Liu, X., et al.: Reuters Tracer: a large scale system of detecting & verifying real-time news events from Twitter. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 207–216. ACM (2016)Google Scholar
  16. 16.
    Lohmann, S., Link, V., Marbach, E., Negru, S.: WebVOWL: web-based visualization of ontologies. In: Lambrix, P., et al. (eds.) EKAW 2014. LNCS (LNAI), vol. 8982, pp. 154–158. Springer, Cham (2015). Scholar
  17. 17.
    Machill, M., Beiler, M.: The importance of the internet for journalistic research: a multi-method study\(\ldots \). J. Stud. 10(2), 178–203 (2009)Google Scholar
  18. 18.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  19. 19.
    Miroshnichenko, A.: AI to bypass creativity. Will robots replace journalists? (The answer is “yes”). Information 9(7), 183 (2018)CrossRefGoogle Scholar
  20. 20.
    Opdahl, A.L., Berven, A., Alipour, K., Christensen, O.A., Villanger, K.J.: Knowledge graphs for newsroom systems. In: NOKOBIT, vol. 24 (2016)Google Scholar
  21. 21.
    Passant, A., Laublet, P.: Meaning of a Tag: a collaborative approach to bridge the gap between tagging and linked data. In: LDOW, vol. 369 (2008)Google Scholar
  22. 22.
    Rospocher, M., et al.: Building event-centric knowledge graphs from news. J. Web Semant. 37, 132–151 (2016)CrossRefGoogle Scholar
  23. 23.
    Segers, R., Vossen, P., Rospocher, M., Serafini, L., Laparra, E., Rigau, G.: ESO: a frame based ontology for events and implied situations. In: Proceedings of MAPLEX 2015 (2015)Google Scholar
  24. 24.
    Shoemaker, P.J., Reese, S.D.: Mediating the Message: Theories of Influences on Mass Media Content. Longman, White Plains (1995)Google Scholar
  25. 25.
    Stavelin, E.: Computational Journalism. When journalism meets programming. Ph.D. thesis, University of Bergen (2013)Google Scholar
  26. 26.
    Tessem, B., Opdahl, A.L.: Supporting journalistic news angles with models and analogies. In: Proceedings IEEE RCIS 2019, Brussels (2019)Google Scholar
  27. 27.
    Troncy, R.: Bringing the IPTC news architecture into the semantic web. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 483–498. Springer, Heidelberg (2008). Scholar
  28. 28.
    Van Hage, W.R., Malaisé, V., Segers, R., Hollink, L., Schreiber, G.: Design and use of the simple event model (SEM). Web Semant. Sci. Serv. Agents World Wide Web 9(2), 128–136 (2011)CrossRefGoogle Scholar
  29. 29.
    Voskarides, N., et al.: Weakly-supervised contextualization of knowledge graph facts. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 765–774. ACM (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Information Science and Media StudiesUniversity of BergenBergenNorway

Personalised recommendations