Mangroves: A Barrier Against Erosion

  • Abhijit Mitra


Coastal erosion is a natural process in which rocks, sands and mud particles are dislodged from the shoreline by various eroding agents. Wave actions and tidal surges are the major eroding agents which erode the beaches and intertidal mudflats. In the mangrove ecosystem the loose mud are highly prone to erosion. The magnitude of erosion in islands and coastal areas is regulated by the density of vegetation (preferably mangroves and mangrove associate species). In Indian Sundarban ecosystem, the relative abundance of mangroves greatly influences the process of erosion. It is considerably low, where the density of mangrove is high in terms of population with considerable biomass. The case studies highlighted in this chapter serves as a road map to evaluate the role of mangroves in controlling erosion.


Erosion Mangroves Indian Sundarban ecosystem Relative abundance 


  1. Banerjee, K., Sengupta, K., Raha, A. K., & Mitra, A. (2013). Salinity based allometric equations for biomass estimation of Sundarban mangroves. Biomass and Bioenergy (Elsevier), 56, 382–391.CrossRefGoogle Scholar
  2. Britsch, L. D., & Kemp III, E. B. (1990). Land loss rates: Mississippi River deltaic plain. US Corps of Engineers Technical Report GL-90-2, New Orleans.Google Scholar
  3. Cahoon, D. R., & Hensel, P. (2006). High-resolution global assessment of mangrove responses to sea-level rise: a review. In: E. Gilman, (Ed.), Proceedings of the Symposium on Mangrove Responses to Relative Sea Level Rise and Other Climate Change Effects, 13 July 2006, Catchments to Coast, Society of Wetland Scientists 27th International Conference, 9–14 July 2006, Cairns Convention Centre, Cairns, Australia. Western Pacific Regional Fishery Management Council, Honolulu, HI, USA, ISBN: 1-934061-03-4, p. 9–17.Google Scholar
  4. Cahoon, D. R., Hensel, P., Rybczyk, J., McKee, K., Proffitt, C. E., & Perez, B. (2003). Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after hurricane Mitch. Journal of Ecology, 91, 1093–1105.CrossRefGoogle Scholar
  5. Chaudhuri, A. B., & Choudhury, A. (1994). Mangroves of the Sundarbans, IUCN – The World Conservation Union, vol. 1 (p. 165), IUCN, Bangkok, Thailand.Google Scholar
  6. Delaune, R. D., Patrick, W. H., Lindau, C. W., & Smith, C. J. (1990). Nitrous oxide and methane emission from gulf coast wetlands. In A. F. Bouman (Ed.), Soils and the greenhouse effect (pp. 498–501). John Wiley & Sons Ltd, NJ, United States.Google Scholar
  7. Furukawa, K., & Wolanski, E. (1996). Sedimentation in mangrove forests. Mangroves Salt Marshes, 1, 3–10.CrossRefGoogle Scholar
  8. Furukawa, K., Wolanski, E., & Mueller, H. (1997). Currents and sediment transport in mangrove forests. Estuarine Coastal and Shelf Science, 44, 301–310.CrossRefGoogle Scholar
  9. Ganguly, D., Mukhopadhyay, A., Pandey, R. L. K., & Mitra, D. (2006). Geomorphological study of Sundarban deltaic estuary. Journal of the Indian Society of Remote Sensing, 34(4), 431–435.CrossRefGoogle Scholar
  10. Kathiresan, K. (2003). How do mangrove forests induce sedimentation? Revista de Biologia Tropical, 51(2), 355–360.Google Scholar
  11. Krauss, K. W., Allen, J. A., & Cahoon, D. R. (2003). Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuarine Coastal and Shelf Science, 56, 251–259.CrossRefGoogle Scholar
  12. Mitra, A. (2013). Sensitivity of Mangrove ecosystem to changing climate (p. 323). Springer. Scholar
  13. Mitra, A. (2018). Estuarine pollution in the lower Gangetic Delta. Springer Nature Switzerland AG. ISBN 978-3-319-93305-4.Google Scholar
  14. Mitra, A., Gangopadhyay, A., Dube, A., Schmidt, A. C. K., & Banerjee, K. (2009). Observed changes in water mass properties in the Indian Sundarbans (Northwestern Bay of Bengal) during 1980–2007. Current Science, 1445–1452.Google Scholar
  15. Mitra, A., Banerjee, K., & Sinha, S. (2011). Shrimp tissue quality in the lower Gangetic delta at the apex of Bay of Bengal. Toxicological and Environmental Chemistry, 93(3), 565–574.CrossRefGoogle Scholar
  16. Morris, J. T., Kjerfve, B., & Dean, J. M. (1990). Dependence of estuarine productivity on anomalies in mean sea level. Limnology and Oceanography, 35, 926–930.CrossRefGoogle Scholar
  17. Nyman, J. A., Delaune, R. D., & Patrick, W. H., Jr. (1990). Wetland soil formation in the rapidly subsiding Mississippi River deltaic plain: Mineral and organic matter relationships. Estuarine, Coastal and Shelf Science, 31, 57–69.CrossRefGoogle Scholar
  18. Raha, A. K., Bhattacharyya, S. B., Zaman, S., Banerjee, K., Sengupta, K., Sinha, S., Sett, S., Chakraborty, S., Datta, S., Dasgupta, S., Chowdhury, M. R., Ghosh, R., Mondal, K., Pramanick, P., & Mitra, A. (2013). Carbon census in dominant mangroves of Indian Sundarbans. The Journal of Energy and Environmental Science (Photon), 127, 345–354.Google Scholar
  19. Reed, D. J. (1999). Response of mineral and organic components of coastal marsh accretion to global climate change. Current Topics in Wetland Biogeochemistry, 3, 90–99.Google Scholar
  20. Tamai, S., Nakasuga, T., Tabuchi, R., & Ogino, K. (1983). Ecological studies of mangrove forests in Southern Thailand – Standing structure and biomass. Mangrove Ecology in Thailand, Bulletin of the Thai-Japanese Cooperative Research Project on Mangrove Productivity and Development 1981–1982. pp. 3–15.Google Scholar
  21. Trivedi, S., Zaman, S., Ray Chaudhuri, T., Pramanick, P., Fazli, P., Amin, G., & Mitra, A. (2016). Inter-annual variation of salinity in Indian Sundarbans. Indian Journal of Geo-Marine Science, 45(3), 410–415.Google Scholar
  22. Woodroffe, C. D. (1990). The impact of sea-level rise on mangrove shorelines. Progress of Physical Geography, 14, 483–520.CrossRefGoogle Scholar
  23. Woodroffe, C. (2002). Coasts: Form, process and evolution. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Abhijit Mitra
    • 1
  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia

Personalised recommendations